The Expansion Joint and Check Valve People

$\stackrel{N}{V}$
N

4
7
7

 Molded

Proco Style 242 Molded Spherical Joints

Proco Style 242 Spherical Molded Expansion Joints are designed for piping systems to absorb pipe movements, relieve stress, reduce system noise/ vibration, compensate for misalignment/offset and to protect rotating mechanical equipment against start-up surge forces.

The molded style 242 twin sphere designed bellows are inherently stronger than the conventional hand-built style spool arch type. Internal pressure within a "sphere" is exerted in all directions, distributing forces evenly over a larger area. The spherical design "flowing arch" reduces turbulence and sediment buildup.

Features and Benefits:

Absorbs Directional Movement

Thermal movements appear in any rigid pipe system due to temperature changes. The Style 242 spherical arch expansion joints allow for axial compression or axial extension, lateral deflection as well as angular movement. (Note: Rated movements in this publication are based on single plane movements. Multiple movement conditions are based on a multiple movement calculation. Contact Proco for information when designing multiple pipe movements.)

Easy Installation with Rotating Metallic Flanges

The floating metallic flanges freely rotate on the bellows, compensating for mating flange misalignment, thus speeding up installation time. Gaskets are not required with the Style 242, provided the expansion joints are mated against a flat face flange as required in the installation instructions.

Flange Materials/Drilling

The Proco Style 242 molded expansion joints are furnished complete with plated carbon steel flanges for corrosion protection. 304 or 316 stainless steel flanges are available upon request as well as ANSI $250 / 300 \mathrm{lb}$., BS-10, DIN PN10 \& PN16 and JIS-10K drilling.

Absorbs Vibration, Noise and Shock

The Proco Style 242 molded expansion joints effectively dampen and insulate downstream piping against the transmission of noise and vibration generated by mechanical equipment. Noise and vibration caused by equipment can cause stress in pipe, pipe guides, anchors and other equipment downstream. Water hammer and pumping impulses can also cause strain, stress or shock to a piping system. Install the Style 242 molded expansion joints to help compensate for these system pressure spikes.

Wide Service Range with Low Cost

Engineered to operate up to 300 PSIG or 265° F, the Proco Style 242 can be specified for a wide range of piping requirements.
Compared to conventional hand-built spool type joints, you will invest less money when specifying the mass-produced, consistent high quality, molded single or twin sphere expansion joints.

Material Identification

All Style 242 molded expansion joints have branded elastomer designations. Neoprene Tube/Neoprene Cover (NN) and Nitrile Tube/Neoprene Cover (NP) elastomer designated joints meet the Coast Guard Requirements and conform to ASTM F1123-87. 240C/NP-9 joints have ABS cerificication.

Large Inventory
Proco Products, Inc. maintains one of the largest inventories of rubber expansion joints in the world. Please contact us for price and availability.

Table 1: Available Styles - Materials

For Specticic Elastomer

Recommendations, See: PROCO "Chemical To Elastomer Guide"

	Proco Material Code	Cover Elastomer	Tube Elastomer ${ }^{2}$	Maximum Operating Temp. ${ }^{\circ} \mathrm{F}$	Idenififying Color Band/Label
$\begin{aligned} & \hline x \\ & X \end{aligned}$	$\begin{aligned} & \text { / } \mathrm{BB}^{3} \\ & / \mathrm{EE}^{3,7} \end{aligned}$	Chlorobutyl EPDM	Chlorobutyl EPDM	$\begin{aligned} & 250^{\circ} \\ & 250^{\circ} \end{aligned}$	Black
$\begin{aligned} & \hline x \\ & X \\ & X \end{aligned}$	$\begin{aligned} & / \mathrm{NH} \\ & / \mathrm{NN}{ }^{7} \\ & / \mathrm{NP} \end{aligned}$	Neoprene Neoprene Neoprene	CSM Neoprene Nitrile	$\begin{aligned} & 212^{\circ} \\ & 225^{\circ} \\ & 2122^{\circ} \end{aligned}$	Green Blue Yellow

6. All elastomers above are not intended for steam service.
7. Elastomers are in accordance with NSF/ANSI 372, File MH47689 Und. Lab. Classified.
8. All elastomers above are not intended for steam service.
9. For PTFE lined single sphere see www.procoproducts.com/ptfelined.html
10. Series 240AV,D,E\&M + 242A,B\&C In Elastomers EPDM \& Neoprene are all listed for low lead content in accordance with NSF/ANSI 372

Style 242 Twin Sphere Performance Data

Table 2: Sizes • Movements • Pressures • Flange Standards • Weights

NOMINAL Pipe Size I.D.	Neutral Length	PROCO Style Number 1	242 Movement Capobililit:From Neutral Posilion (Non-Concurrent) ${ }^{2}$					Pressure 4		Standard Flange Drilling Dimensions ${ }^{8}$					Weight in lbs	
													$\begin{aligned} & \text { 웅 } \\ & \text { 옹 } \\ & \text { 흥 } \\ & \text { 흩 } \end{aligned}$			
$\begin{gathered} 1 \\ (25) \end{gathered}$	10.00	242-C	2.000	1.188	1.750	45	4.43	225	26	4.25	3.13	4	0.625	-	5.2	3.6
1.25 (32)	$\begin{gathered} \hline 7.0 \\ 7.0 \\ 10.00 \\ \hline \end{gathered}$	$\begin{aligned} & \text { 242-A } \\ & 242-H A \\ & 242-\mathrm{C} \\ & \hline \end{aligned}$	2.000	1.188	1.750	45	6.34	$\begin{array}{\|l\|} \hline 225 \\ 300 \\ 225 \\ \hline \end{array}$	26	4.63	3.5	4	$\begin{array}{\|l\|} \hline 0.625 \\ 0.625 \\ 0.625 \\ \hline \end{array}$	1/2-13 UNC	$\begin{aligned} & 5.3 \\ & 6.5 \\ & 6.2 \\ & \hline \end{aligned}$	3.6 3.5 3.5 3.6
$\begin{aligned} & 1.5 \\ & (40) \end{aligned}$	$\begin{gathered} \hline 6.00 \\ 6.00 \\ 7.00 \\ 7.00 \\ 10.00 \\ \hline \end{gathered}$	$\begin{aligned} & 242-B \\ & 242 \cdot H B \\ & 242-A \\ & 242 \cdot H A \\ & 242 \cdot C \end{aligned}$	2.000	1.188	1.750	45	6.49	$\begin{aligned} & 225 \\ & 300 \\ & 225 \\ & 300 \\ & 225 \\ & \hline \end{aligned}$	26	5.0	3.88	4	$\begin{aligned} & 0.625 \\ & 0.625 \\ & 0.625 \\ & 0.625 \\ & 0.625 \\ & \hline \end{aligned}$	$\stackrel{-}{1 / 2-13}$ UNC	$\begin{aligned} & \hline .2 .1 \\ & 7.6 \\ & 6.8 \\ & 8.3 \\ & 7.7 \\ & \hline \end{aligned}$	4.6 4.6 4.8 4.8 5.1
$\begin{gathered} 2 \\ (50) \end{gathered}$	$\begin{array}{r} \hline 6.00 \\ 7.00 \\ 10.00 \\ 6.00 \\ 7.00 \\ \hline \end{array}$	$\begin{aligned} & 242-B \\ & 242-A \\ & 242-C \\ & Q-242-H B \\ & Q-242-H A \end{aligned}$	2.000	1.188	1.750	45	7.07	$\begin{aligned} & 225 \\ & 225 \\ & 235 \\ & 300 \\ & 300 \\ & \hline \end{aligned}$	26	$\begin{aligned} & \hline 6.0 \\ & 6.0 \\ & 6.0 \\ & 6.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.75 \\ & 4.75 \\ & 4.75 \\ & 4.75 \\ & 5.00 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 4 \\ 4 \\ 4 \\ 4 \\ 8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.750 \\ 0.750 \\ 0.750 \\ 0.750 \\ 0.750 \\ \hline \end{array}$	5/8-17 UNC	$\begin{gathered} 9.0 \\ 9.0 \\ 10.2 \\ 10.5 \\ 10.5 \\ \hline \end{gathered}$	6.6 7.0 7.3 6.6 7.0
$\begin{aligned} & 2.5 \\ & \text { (65) } \end{aligned}$	$\begin{array}{r} 1.00 \\ 6.00 \\ 7.00 \\ 10.00 \\ 6.00 \\ 7.00 \\ \hline \end{array}$	$\begin{aligned} & 242-B \\ & 242-A \\ & 242 \cdot C \\ & Q-242-H B \\ & a-242-H A \end{aligned}$	2.000	1.188	1.750	43	11.05	$\begin{aligned} & 225 \\ & 225 \\ & 225 \\ & 300 \\ & 300 \\ & \hline \end{aligned}$	26	7.0	5.5	4	$\begin{array}{\|l\|} \hline 0.750 \\ 0.750 \\ 0.750 \\ 0.750 \\ 0.750 \\ \hline \end{array}$	5/8-17 UNC	$\begin{aligned} & 12.9 \\ & 13.3 \\ & 14.5 \\ & 15.3 \\ & 15.8 \\ & \hline \end{aligned}$	7.6 8.0 8.4 7.6 8.0 8
$\begin{gathered} \mathbf{3} \\ (80) \end{gathered}$	$\begin{gathered} 7.00 \\ 9.00 \\ 10.00 \\ 12.00 \\ 7.00 \\ \hline \end{gathered}$	$\begin{aligned} & 242-A \\ & 242-B \\ & 242 \cdot-\overline{1} \\ & 242 \cdot-C \\ & a-242-H A \end{aligned}$	2.000	1.188	1.750	38	13.36	$\begin{array}{\|l\|} \hline 225 \\ 225 \\ 225 \\ 225 \\ 300 \\ \hline \end{array}$	26	$\begin{array}{\|l\|} \hline 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 8.25 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6.0 \\ 6.0 \\ 6.0 \\ 6.0 \\ 6.62 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4 \\ 4 \\ 4 \\ 4 \\ 8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.750 \\ 0.750 \\ 0.750 \\ 0.750 \\ 0.875 \\ \hline \end{array}$	5/8-11 UNC	$\begin{aligned} & 14.3 \\ & 15.2 \\ & 15.8 \\ & 16.0 \\ & 18.2 \\ & \hline \end{aligned}$	8.6 9.0 9.1 9.9 8.6
$\begin{gathered} 4 \\ (100) \end{gathered}$	$\begin{array}{r} 1.00 \\ 9.000 \\ 10.00 \\ 12.00 \\ 9.00 \\ \hline \end{array}$	$\begin{aligned} & 242-\mathrm{A} \\ & 242 \cdot \mathrm{C} \\ & 242 \cdot \mathrm{C} \\ & \mathrm{Q}-242 \cdot \mathrm{HA} \end{aligned}$	2.000	1.375	1.562	34	22.69	$\begin{aligned} & 225 \\ & 225 \\ & 225 \\ & 300 \\ & \hline \end{aligned}$	26	$\begin{gathered} 0.20 \\ \hline 9.0 \\ 9.0 \\ 9.0 \\ 10.0 \end{gathered}$	$\begin{array}{\|c\|} \hline 7.5 \\ \hline 7.5 \\ 7.5 \\ 7.88 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 8 \\ 8 \\ 8 \\ 8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.750 \\ 0.750 \\ 0.750 \\ 0.750 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5 / 8-11 \text { UNC } \\ - \\ 3 / 4-10 \text { UNC } \\ \hline \end{array}$	$\begin{aligned} & 20.3 \\ & 21.3 \\ & 22.0 \\ & 26.4 \\ & \hline \end{aligned}$	8.0 8.2 8.2 8.0
$\begin{gathered} 5 \\ (125) \end{gathered}$	$\begin{gathered} 9.00 \\ \hline 10.00 \\ 12.00 \\ 9.00 \end{gathered}$	$\begin{aligned} & 242-\mathrm{A} \\ & 242 \cdot \mathrm{C} \\ & 242 \cdot \mathrm{C} \\ & \mathrm{a}-242-\mathrm{HA} \end{aligned}$	2.000	1.375	1.562	29	30.02	$\begin{array}{\|l\|} \hline 225 \\ 225 \\ 225 \\ 300 \\ \hline \end{array}$	26	$\begin{array}{\|l} \hline 10.0 \\ 10.0 \\ 10.0 \\ 11.0 \end{array}$	$\begin{aligned} & \hline 8.5 \\ & \hline 8.5 \\ & 8.5 \\ & 9.25 \\ & \hline \end{aligned}$	8	$\begin{array}{\|l\|} \hline 0.875 \\ 0.875 \\ 0.875 \\ 0.875 \\ \hline \end{array}$	-	$\begin{aligned} & 24.5 \\ & 25.5 \\ & 26.0 \\ & 31.4 \\ & \hline \end{aligned}$	8.3 9.1 9.1 8.3
$\underset{(150)}{\mathbf{6}}$	$\begin{aligned} & 9.00 \\ & 10.00 \\ & 12.00 \\ & 14.00 \\ & 9.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 242-\mathrm{A} \\ & 242 \cdot \mathrm{C} \\ & 242 \cdot \mathrm{C} \\ & 242 \cdot \mathrm{C} \\ & \mathrm{a}-242 \cdot \mathrm{HA} \end{aligned}$	2.000	1.375	1.562	25	41.28	$\begin{aligned} & 225 \\ & 225 \\ & 225 \\ & 225 \\ & 300 \\ & \hline \end{aligned}$	26	$\begin{array}{\|l\|l\|} \hline 11.0 \\ 11.0 \\ 11.0 \\ 11.0 \\ 12.5 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 9.5 \\ 9.5 \\ 9.5 \\ 9.5 \\ 10.62 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8 \\ 8 \\ 8 \\ 8 \\ 12 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.875 \\ 0.875 \\ 0.875 \\ 0.875 \\ 0.875 \\ \hline \end{array}$	3/4-10 UNC	$\begin{aligned} & 29.5 \\ & 30.5 \\ & 31.0 \\ & 32.0 \\ & 38.6 \\ & \hline \end{aligned}$	11.7 11.9 12.0 12.0 11.7 14.5
$\begin{gathered} 8 \\ (200) \end{gathered}$	$\begin{aligned} & 9.00 \\ & 10.00 \\ & 12.00 \\ & 13.00 \\ & 14.00 \\ & 9.00 \\ & 13.00 \end{aligned}$	$\begin{aligned} & \hline 242 \cdot-\mathrm{B} \\ & 242 \cdot \mathrm{C} \\ & 242 \cdot \mathrm{C} \\ & 242-\mathrm{A} \\ & 242 \cdot \mathrm{C} \\ & \mathrm{Q}-242 \cdot \mathrm{HB} \\ & \mathrm{Q}-242 \cdot \mathrm{HA} \\ & \hline \end{aligned}$	2.375	1.375	1.375	19	63.62	$\begin{aligned} & 225 \\ & 225 \\ & 225 \\ & 225 \\ & 225 \\ & 300 \\ & 300 \end{aligned}$	26	$\begin{aligned} & \hline 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 13.5 \\ & 15.0 \\ & 15.0 \end{aligned}$	$\begin{array}{\|c\|} \hline 11.75 \\ 11.75 \\ 11.75 \\ 11.75 \\ 11.75 \\ 13.0 \\ 13.0 \end{array}$	$\begin{array}{\|c\|} \hline 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 12 \\ 12 \end{array}$	0.875 0.875 0.875 0.875 0.875 1.000 1.000 1	3/4-10 UNC	42.3 43.4 44.0 43.8 46.0 55.4 57.5	14.5 15.0 15.2 15.4 16.0 14.5 15.4 1.5
$\begin{gathered} 10 \\ (250) \end{gathered}$	$\begin{aligned} & 12.00 \\ & 13.00 \\ & 14.00 \\ & 12.00 \\ & 13.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 242-B \\ & 242-A \\ & 242-\mathrm{C} \\ & Q-242-H B \\ & Q-242 \cdot H A \end{aligned}$	2.375	1.375	1.375	15	103.87	$\begin{array}{\|l\|} \hline 225 \\ 225 \\ 225 \\ 275 \\ 275 \\ \hline \end{array}$	26	$\begin{aligned} & \hline 16.0 \\ & 16.0 \\ & 16.0 \\ & 17.5 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 14.25 \\ & 14.25 \\ & 14.25 \\ & 15.25 \\ & 15.25 \\ & \hline \end{aligned}$	12 12 12 16 16	$\begin{array}{\|l\|} \hline 1.000 \\ 1.000 \\ 1.000 \\ 1.125 \\ 1.125 \\ \hline \end{array}$	7/8-9 UNC -	64.1 65.5 66.7 86.5 88.4	12.5 23.5 24.5 24.5 23.5 24.5

Style 242 Twin Sphere Performance Data continued...

Table 2: Sizes • Movements • Pressures • Flange Standards•Weights

Pipe Size I.D.	Neutral Length	$\begin{gathered} \text { Proco } \\ \text { Style } \\ \text { Number } \end{gathered}$	242 Movement Capability: From Neutral Position (Non-Concurrent) ${ }^{2}$					Pressure 4		Standard Flange Drilling Dimensions ${ }^{8}$					Weight in los	
							$\begin{aligned} & \text { n } \\ & \text { 흔 } \\ & \text { N } \\ & \text { 른 } \end{aligned}$									
$\begin{gathered} 12 \\ (300) \end{gathered}$	12.00	242-B	2.375	1.375	1.375	13	137.89	225		19.0	17.00	12	1.000	-	94.0	30.0
	13.00	242-A						225		19.0	17.00	12	1.000	-	95.0	31.0
	14.00	242-C						225	26	19.0	17.00	12	1.000	7/8-9 UNC	99.1	31.0
	12.00	Q-242-HB						275		20.5	17.75	16	1.250	7	110.0	30.0
	13.00	Q-242-HA						275		20.5	17.75	16	1.250	-	110.0	31.0
$\begin{gathered} 14 \\ (350) \end{gathered}$	13.75	242-A	1.750	1.118	1.118	9	182.65	150	26	19.0	18.75	12	1.125	-	142.0	32.0
	12.00	242-C	1.750	1.118	1.118	8	240.53	125	26	23.5	21.25	16	1.125	-	154.0	28.8
16	12.00	242-HC						175					1.125	-	190.0	28.8
(400)	13.75	242-A						125					1.125	-	162.0	30.8
	13.75	242-HA						175					1.125	-	200.2	30.8
$\begin{gathered} 18 \\ (450) \end{gathered}$	12.00	$242-C$	1.750	1.118	1.118	7	298.65	125	26	25.0	22.75	16	1.250	-	168.0	35.1
	13.75	242-A						125					1.250	-	176.0	36.1
	13.75	242-HA						175					1.250	-	211.2	36.1
$\begin{gathered} 20 \\ (500) \end{gathered}$	12.00	242-C	1.750	1.118	1.118	7	363.05	125	26	27.5	25.0	20	1.250	-	202.0	35.0
	13.75	242-A						125					1.250	-	212.0	35.5
	13.75	242-HA						175					1.250	-	212.0	35.5
$\begin{gathered} 24 \\ (600) \end{gathered}$	12.00	242-C	1.750	1.118	1.118	5	510.70	110	26	32.5	29.5	20	1.375	-	220.0	47.0
	13.75	242-A						110					1.375	-	250.0	48.0
	13.75	242-HA						160					1.375	-	296.2	48.0
$\begin{gathered} 30 \\ (750) \end{gathered}$	12.00	242-C	1.750	1.118	1.118	4	779.31	110	26	38.75	36.0	28	1.375	-	300.0	62.0

NOTES:

Standard Proco Style 242-A Expansion Joints shown in Bold Type are considered Standards and are inventoried in large quantities.

1. "HW" denotes Heavy Weight Construction. For sizes 2" I.D. thru 12" I.D., Proco will only offer these items with 300 lb . drilling and are denoted by Q-242-HW. All Q-240-HW units will only be sold with control units.
2. Concurrent Movements - Concurrent movements are developed when two or more movements in a pipe system occur at the same time.

If multiple movements exceed single arch design there may be a need for an additional arch.
To perform calculation for concurient movement when a pipe system design has more than one movement, please use the following formula:
Actual Axial Compression + Actual Axial Extension + Actual Lateral $(X)+$ Actual Lateral (Y)
Rated Axial Compression $+\overline{\text { Rated Axial Extension }}+\frac{\text { Rated Lateral }(X)}{}+\frac{\text { Rated Lateral (Y) }}{(Y)}=<1$
Calculation must be equal to or less than 1 for expansion joint to operate within concurrent movement capability.
3. Calculation of Thrust (Thrust Factor). When expansion joints are installed in the pipeline, the static portion of the thrust is calculated as a product of the area of the I.D. of the arch of the expansion joint times the maximum pressure (design, test or surge) that will occur in the line. The result is a force expressed in pounds.
Take design, surge or test pressure X thrust factor to calculate end thrust.

"Effective Area"

4. Pressure rating is based on 170° F operating temperature. The pressure rating is reduced at higher temperatures.
5. Pressures shown at maximum "operating pressure". Test pressure is 7.5 times "operating pressure". Busst pressure is 4 times "operating pressure". If factory hydro-test is required, an additional joint per size must be purchased and tested. Once hydro-tested this joint may not be sent to field for installation as the beaded end will have taken a (compressed) set and can not be reused.
6. Vacuum rating is based on neutral installed length, without external load. Products should not be installed in extension for vacuum applications. Flattening of the arch in extended mode will cause the arch to collapse.
7. Style 242A/NN (neoprene elastomer only) expansion joints 1.0"I.D. thru 12" I.D. are available with tapped (threaded) holes and must be specified at time of order.
8. In addition to standard 150 lb . drilled flanges, Proco can provide expansion joints listed above in 300 lb . drilling, BS-10 (British) drilling, Metric PN1O and PN16 drilling and JIS $10 \mathrm{~kg} / \mathrm{cm}$ driling.

Style 242 Drilling Chart

Table 3: Flange Drilling

Nomi	American 125/150\#Conforms to ANSI B16.1 and B16.5						American 250/300\#Conforms to ANSI B16.1 and B16.5					Briilsh Standard 10:1962 Conforms to BS 10 Table E				
Pipe Size Inch (mm)		$\begin{aligned} & \text { ì } \\ & \text { © } \\ & \text { 曾 } \end{aligned}$	$\begin{aligned} & \text { ouby } \\ & \frac{0}{0} \end{aligned}$		$\begin{aligned} & \text { 끙 } \\ & \text { 울 } \\ & \text { 흗 } \end{aligned}$			$\begin{aligned} & \text { ì } \\ & \text { O. } \\ & \text { 訔 } \end{aligned}$	$\begin{aligned} & \text { oub } \\ & \text { 흥 } \end{aligned}$	$\begin{aligned} & \text { 웅 } \\ & \text { 홍 } \\ & \stackrel{\circ}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { :~̈ㅊ } \\ & \stackrel{\text { 울 }}{2} \end{aligned}$			$\begin{aligned} & \stackrel{0}{0} \text { B } \\ & \frac{0}{\circ} \end{aligned}$	¢ 훛 ¢ ¢ ¢	:~께
$\begin{gathered} 1 \\ (25) \end{gathered}$	$\begin{array}{\|c\|} \hline 0.55 \\ (14.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 4.25 \\ (108.0) \\ \hline \end{array}$	$\begin{array}{r} \hline 3.13 \\ (79.4) \\ \hline \end{array}$	4	$\begin{array}{\|c\|} \hline 0.62 \\ (15.9) \\ \hline \end{array}$	1/2-13 UNC	$\begin{array}{r} \hline 0.63 \\ (16.0) \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline 4.88 \\ (124.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.5 \\ (88.9) \\ \hline \end{array}$	4	$\begin{array}{\|c\|} \hline 0.75 \\ \text { (19.1) } \\ \hline \end{array}$	$\begin{gathered} \hline 0.59 \\ (15.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 4.5 \\ (114.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.25 \\ (82.6) \end{array}$	4	$\begin{aligned} & 0.62 \\ & (15.9) \\ & \hline \end{aligned}$
$\begin{gathered} 1.25 \\ (32) \end{gathered}$	$\begin{array}{\|c\|} \hline 0.55 \\ (14.0) \\ \hline \end{array}$	$\begin{gathered} 4.63 \\ (118.0) \end{gathered}$	$\begin{gathered} \hline 3.5 \\ (88.9) \end{gathered}$	4	$\begin{array}{\|c\|} \hline 0.62 \\ (15.9) \end{array}$	1/2-13 UNC	$\begin{array}{r} 0.63 \\ (16.0) \end{array}$	$\begin{gathered} 5.25 \\ (133.0) \end{gathered}$	$\begin{aligned} & \hline 3.88 \\ & (98.4) \end{aligned}$	4	$\begin{gathered} 0.75 \\ (19.1) \end{gathered}$	$\begin{gathered} 0.59 \\ (15.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 4.75 \\ (121.0) \end{array}$	$\begin{aligned} & 3.44 \\ & (87.3) \end{aligned}$	4	$\begin{gathered} 0.62 \\ (15.9) \end{gathered}$
$\begin{aligned} & 1.5 \\ & (40) \end{aligned}$	$\begin{array}{\|c\|} \hline 0.55 \\ (14.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 5.0 \\ (127.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.88 \\ (98.4) \end{array}$	4	$\begin{array}{\|c\|} \hline 0.62 \\ (15.9) \\ \hline \end{array}$	1/2-13 UNC	$\begin{array}{r} 0.63 \\ (16.0) \end{array}$	$\begin{array}{\|c} \hline 6.12 \\ (156.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.50 \\ (114.3) \\ \hline \end{array}$	4	$\begin{array}{\|c} \hline 0.88 \\ (22.2) \\ \hline \end{array}$	$\begin{gathered} \hline 0.59 \\ (15.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 5.25 \\ (133.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.88 \\ (98.4) \\ \hline \end{array}$	4	$\begin{aligned} & \hline 0.62 \\ & (15.9) \end{aligned}$
$\begin{gathered} 2 \\ (50) \end{gathered}$	$\begin{array}{\|c\|} \hline 0.63 \\ (16.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 6.0 \\ (152.0) \end{array}$	$\begin{array}{\|c\|} \hline 4.75 \\ (120.7) \end{array}$	4	$\begin{array}{\|c\|} \hline 0.75 \\ (19.1) \end{array}$	5/8-11 UNC	$\begin{aligned} & \hline 0.71 \\ & \text { (18.0) } \end{aligned}$	$\begin{array}{\|c} \hline 6.50 \\ (165.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 5.00 \\ (127.0) \\ \hline \end{array}$	8	$\begin{gathered} 0.75 \\ (19.1) \end{gathered}$	$\begin{aligned} & \hline 0.63 \\ & (16.0) \end{aligned}$	$\begin{array}{\|c\|} \hline 6.0 \\ (152.0) \end{array}$	$\begin{array}{\|c} \hline 4.5 \\ (114.3) \end{array}$	4	$\begin{aligned} & \hline 0.75 \\ & (19.1) \end{aligned}$
$\begin{aligned} & 2.5 \\ & (65) \end{aligned}$	$\begin{array}{\|c\|} \hline 0.71 \\ (18.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 7.0 \\ (178.0) \\ \hline \end{array}$	$\begin{gathered} \hline 5.5 \\ (139.7) \\ \hline \end{gathered}$	4	$\begin{array}{\|c\|} \hline 0.75 \\ \text { (19.1) } \\ \hline \end{array}$	5/8-11 UNC	$\begin{array}{\|c} \hline 0.71 \\ (18.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 7.5 \\ (191.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 5.88 \\ (149.2) \\ \hline \end{array}$	8	$\begin{array}{\|c} \hline 0.88 \\ (22.2) \\ \hline \end{array}$	$\begin{gathered} \hline 0.71 \\ (18.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 6.5 \\ (165.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5.0 \\ (127.0) \\ \hline \end{array}$	4	$\begin{gathered} \hline 0.75 \\ \text { (19.1) } \\ \hline \end{gathered}$
$\begin{gathered} \mathbf{3} \\ (80) \end{gathered}$	$\begin{gathered} 0.71 \\ (18.0) \end{gathered}$	$\begin{array}{\|c} \hline 7.5 \\ (191.0) \end{array}$	$\begin{gathered} 6.0 \\ (152.4) \end{gathered}$	4	$\begin{array}{\|l\|} \hline 0.75 \\ (19.1) \end{array}$	5/8-11 UNC	$\begin{gathered} \hline 0.79 \\ (20.0) \end{gathered}$	$\begin{gathered} \hline 8.25 \\ (210.0) \end{gathered}$	$\begin{array}{\|c} \hline 6.62 \\ (168.2) \end{array}$	8	$\begin{gathered} 0.88 \\ (22.2) \end{gathered}$	$\begin{gathered} 0.71 \\ (18.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 7.25 \\ (184.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 5.75 \\ (146.1) \end{array}$	4	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$
$\begin{aligned} & 3.5 \\ & (90) \end{aligned}$	$\begin{array}{\|c\|} \hline 0.71 \\ (18.0) \end{array}$	$\begin{array}{\|c\|} \hline 8.5 \\ (216.0) \\ \hline \end{array}$	$\begin{gathered} \hline 7.0 \\ (177.8) \end{gathered}$	8	$\begin{array}{\|c\|} \hline 0.75 \\ (19.1) \end{array}$	5/8-11 UNC	$\begin{gathered} \hline 0.79 \\ (20.0) \end{gathered}$	$\begin{gathered} 9.0 \\ (229.0) \end{gathered}$	$\begin{array}{\|c} \hline 7.25 \\ (184.2) \\ \hline \end{array}$	8	$\begin{gathered} \hline 0.88 \\ (22.2) \end{gathered}$	$\begin{aligned} & 0.71 \\ & \text { (18.0) } \end{aligned}$	$\begin{array}{\|c} \hline 8.0 \\ (203.0) \end{array}$	$\begin{gathered} \hline 6.5 \\ (165.1) \end{gathered}$	8	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$
$\begin{gathered} 4 \\ (100) \end{gathered}$	$\begin{gathered} 0.71 \\ (18.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 9.0 \\ (229.0) \end{array}$	$\begin{array}{\|c} \hline 7.5 \\ (190.5) \\ \hline \end{array}$	8	$\begin{array}{\|c\|} \hline 0.75 \\ \text { (19.1) } \\ \hline \end{array}$	5/8-11 UNC	$\begin{array}{r} \hline 0.79 \\ (20.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10.0 \\ (254.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 7.88 \\ (200.0) \\ \hline \end{array}$	8	$\begin{array}{\|c} \hline 0.88 \\ (22.2) \end{array}$	$\begin{gathered} \hline 0.71 \\ (18.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 8.5 \\ (216.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 7.0 \\ (177.8) \\ \hline \end{array}$	8	$\begin{aligned} & \hline 0.75 \\ & \text { (19.1) } \end{aligned}$
$\begin{gathered} 5 \\ (125) \end{gathered}$	$\begin{gathered} 0.79 \\ (20.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 10.0 \\ (254.0) \\ \hline \end{array}$	$\begin{gathered} \hline 8.5 \\ (215.9) \end{gathered}$	8	$\begin{array}{\|c} \hline 0.88 \\ (22.2) \end{array}$	3/4-10 UNC	$\begin{gathered} \hline 0.87 \\ (22.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 11.0 \\ (279.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 9.25 \\ (235.0) \end{array}$	8	$\begin{gathered} \hline 0.88 \\ (22.2) \end{gathered}$	$\begin{gathered} \hline 0.79 \\ (20.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 10.0 \\ (254.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8.25 \\ (209.6) \\ \hline \end{array}$	8	$\begin{aligned} & \hline 0.75 \\ & \text { (19.1) } \end{aligned}$
$\begin{gathered} 6 \\ (150) \end{gathered}$	$\begin{array}{\|c\|} \hline 0.87 \\ \hline(22.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 11.0 \\ (279.0) \end{array}$	$\begin{gathered} 9.5 \\ (241.3) \end{gathered}$	8	$\begin{array}{\|c\|} \hline 0.88 \\ (22.2) \end{array}$	3/4-10 UNC	$\begin{gathered} \hline 0.87 \\ (22.2) \end{gathered}$	$\begin{gathered} 12.5 \\ (318.0) \end{gathered}$	$\begin{array}{\|l\|} \hline 10.62 \\ (269.9) \end{array}$	12	$\begin{gathered} \hline 0.88 \\ (22.2) \end{gathered}$	$\begin{gathered} \hline 0.87 \\ (22.2) \end{gathered}$	$\begin{gathered} \hline 11.0 \\ (279.0) \end{gathered}$	$\begin{gathered} 9.25 \\ (235.0) \end{gathered}$	8	$\begin{aligned} & \hline 0.88 \\ & (22.2) \end{aligned}$
$\begin{gathered} 8 \\ (200) \end{gathered}$	$\begin{array}{\|c\|} \hline 0.87 \\ (22.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 13.5 \\ (343.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11.75 \\ (298.5) \\ \hline \end{array}$	8	$\begin{array}{\|c\|} \hline 0.88 \\ (22.2) \\ \hline \end{array}$	3/4-10 UNC	$\begin{array}{r} \hline 0.95 \\ (24.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 15.0 \\ (381.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 13.0 \\ (330.2) \\ \hline \end{array}$	12	$\begin{gathered} 1.00 \\ (25.4) \end{gathered}$	$\begin{aligned} & 0.871 \\ & (22.2) \end{aligned}$	$\begin{array}{\|c\|} \hline 3.25 \\ (337.0) \end{array}$	$\begin{array}{\|c\|} \hline 11.5 \\ (292.1) \\ \hline \end{array}$	8	$\begin{gathered} \hline 0.88 \\ (22.2) \end{gathered}$
$\begin{aligned} & 10 \\ & (250) \end{aligned}$	$\begin{array}{\|c\|} \hline 0.95 \\ (24.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 16.0 \\ (406.0) \end{array}$	$\begin{array}{\|l\|} \hline 14.25 \\ (362.0) \end{array}$	12	$\begin{array}{\|c} \hline 1.00 \\ (25.4) \end{array}$	7/8-9 UNC	$\begin{aligned} & \hline 1.02 \\ & (26.0) \end{aligned}$	$\begin{array}{\|c\|} \hline 17.5 \\ (445.0) \\ \hline \end{array}$	$\begin{aligned} & 15.25 \\ & (387.4) \end{aligned}$	16	$\begin{array}{\|c} \hline 1.13 \\ (28.6) \\ \hline \end{array}$	$\begin{array}{r} \hline 0.95 \\ (24.0) \end{array}$	$\begin{array}{\|c\|} \hline 116.0 \\ (406.0) \end{array}$	$\begin{array}{\|c\|} \hline 14.0 \\ (355.6) \\ \hline \end{array}$	12	$\begin{gathered} \hline 0.88 \\ (22.2) \end{gathered}$
$\begin{gathered} 12 \\ (300) \end{gathered}$	$\begin{array}{\|c\|} \hline 0.95 \\ (24.0) \end{array}$	$\begin{array}{\|c\|} \hline 19.0 \\ (483.0) \end{array}$	$\begin{gathered} 17.0 \\ (431.8) \end{gathered}$	12	$\begin{array}{r} 1.00 \\ (25.4) \end{array}$	7/8-9 UNC	$\begin{gathered} 1.02 \\ (26.0) \end{gathered}$	$\begin{aligned} & \hline 20.5 \\ & (521.0) \end{aligned}$	$\begin{array}{\|c} \hline 17.75 \\ (450.9) \\ \hline \end{array}$	16	$\begin{array}{\|c} \hline 1.25 \\ (31.8) \\ \hline \end{array}$	$\begin{array}{r} \hline 0.95 \\ (24.0) \\ \hline \end{array}$	$\begin{gathered} \hline 18.0 \\ (457.0) \end{gathered}$	$\begin{array}{\|c} \hline 16.0 \\ (406.4) \end{array}$	12	$\begin{aligned} & 1.00 \\ & (25.4) \end{aligned}$
$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{array}{\|c} \hline 1.02 \\ (26.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 21.0 \\ (533.0) \end{array}$	$\begin{aligned} & \hline 18.75 \\ & (476.3) \end{aligned}$	12	$\begin{array}{r} 1.13 \\ \hline(28.6) \end{array}$	1-8 UNC	$\begin{gathered} 1.10 \\ (28.0) \end{gathered}$	$\begin{gathered} 23.0 \\ (584.0) \end{gathered}$	$\begin{array}{\|l} \hline 20.25 \\ (514.4) \\ \hline \end{array}$	20	$\begin{gathered} 1.25 \\ (31.8) \end{gathered}$	$\begin{gathered} 1.02 \\ (26.0) \\ \hline \end{gathered}$	$\begin{array}{\|c} 20.75 \\ (527.0) \end{array}$	$\begin{array}{\|c} \hline 18.5 \\ (469.9) \end{array}$	12	$\begin{array}{r} 1.00 \\ \text { (25.4) } \end{array}$
$\begin{gathered} 16 \\ (400) \end{gathered}$	$\begin{array}{\|l} \hline 1.10 \\ (28.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 23.5 \\ (597.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 21.25 \\ (539.8) \end{array}$	16	$\begin{array}{\|c\|} \hline 1.13 \\ (28.6) \\ \hline \end{array}$	1-8 UNC	$\begin{gathered} \hline 1.18 \\ (30.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 25.5 \\ (648.0) \end{array}$	$\begin{array}{\|c} \hline 22.5 \\ (571.5) \end{array}$	20	$\begin{gathered} 1.38 \\ (34.9) \end{gathered}$	$\begin{gathered} \hline 1.10 \\ (28.0) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 22.75 \\ (578.0) \end{array}$	$\begin{array}{\|c\|} \hline 20.5 \\ (520.7) \end{array}$	12	$\begin{gathered} 1.00 \\ (25.4) \end{gathered}$
$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{array}{\|c} \hline 1.18 \\ (30.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 25.0 \\ (635.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 22.75 \\ (577.9) \\ \hline \end{array}$	16	$\begin{array}{r} 1.25 \\ (31.8) \end{array}$	11/8-7 UNC	$\begin{gathered} \hline 1.18 \\ (30.0) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 28.0 \\ (711.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 24.75 \\ (628.7) \end{array}$	24	$\begin{gathered} \hline 1.38 \\ (34.9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.18 \\ (30.0) \\ \hline \end{gathered}$	$\begin{array}{\|l} \hline 25.25 \\ (641.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 23.0 \\ (584.2) \\ \hline \end{array}$	16	$\begin{array}{r} 1.00 \\ (25.4) \\ \hline \end{array}$
$\begin{gathered} 20 \\ (500) \end{gathered}$	$\begin{gathered} 1.18 \\ (30.0) \\ \hline \end{gathered}$	$\begin{gathered} 27.5 \\ (699.0) \end{gathered}$	$\begin{gathered} 25.0 \\ (635.0) \end{gathered}$	20	$\begin{array}{\|l\|} \hline 1.25 \\ (31.8) \\ \hline \end{array}$	11/8-7 UNC	$\begin{gathered} 1.18 \\ (30.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 30.5 \\ (775.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 27.0 \\ (685.8) \end{array}$	24	$\begin{array}{r} 1.38 \\ (34.9) \end{array}$	$\begin{gathered} 1.18 \\ (30.0) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 27.75 \\ (705.0) \end{array}$	$\begin{array}{\|r} \hline 25.25 \\ (641.4) \\ \hline \end{array}$	16	$\begin{array}{r} 1.00 \\ (25.4) \end{array}$
$\begin{gathered} 24 \\ (600) \end{gathered}$	$\begin{array}{r} 1.18 \\ (30.0) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 32.06 \\ (813.0) \end{array}$	$\begin{gathered} 29.5 \\ (749.3) \end{gathered}$	20	$\begin{array}{r} \hline 1.38 \\ (34.9) \end{array}$	11/4-7 UNC	$\begin{array}{r} \hline 1.18 \\ (30.0) \\ \hline \end{array}$	$\begin{gathered} \hline 36.0 \\ (914.0) \end{gathered}$	$\begin{array}{\|c} \hline 32.0 \\ (812.8) \end{array}$	24	$\begin{gathered} 1.62 \\ (41.3) \end{gathered}$	$\begin{array}{r} \hline 1.18 \\ (30.0) \\ \hline \end{array}$	$\begin{gathered} 32.5 \\ (826.0) \end{gathered}$	$\begin{array}{\|l} \hline 29.75 \\ (755.7) \\ \hline \end{array}$	16	$\begin{aligned} & 1.25 \\ & (31.8) \end{aligned}$
$\begin{aligned} & 30 \\ & (750) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.26 \\ (32.0) \\ \hline \end{array}$	$\begin{aligned} & \hline 38.75 \\ & \text { (984.0) } \end{aligned}$	$\begin{gathered} \hline 36.0 \\ (914.4) \end{gathered}$	28	$\begin{array}{\|c\|} \hline 1.38 \\ (34.9) \end{array}$	11/4-7 UNC	$\begin{aligned} & \hline 1.26 \\ & (32.0) \end{aligned}$	$\begin{gathered} \hline 43.0 \\ (1092.0) \end{gathered}$	$\begin{array}{\|l\|} \hline 39.25 \\ (997.0) \end{array}$	28	$\begin{gathered} \hline 2.00 \\ (50.8) \end{gathered}$	$\begin{aligned} & \hline 1.26 \\ & (32.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 39.25 \\ (997.0) \end{array}$	$\begin{array}{\|c} \hline 36.5 \\ (927.1) \end{array}$	20	$\begin{gathered} 1.38 \\ (34.9) \end{gathered}$

Style 242 Drilling Chart continued...

Table 3: Flange Drilling

	Metric Series Conforms to I.S.0. 2084-1974 Table PN10 Holes to I.S.0. /R-273					Metric Series Conforms to I.S.0. 2084-1974 Table PN16 Holes to I.S.0. /R-273					J.IS. Standard B-2212 Conforms to J.I.S. $10 \mathrm{Kg} / \mathrm{cm}$				
Pipe Size Inch (mm)		O. O 은 흔	$\begin{aligned} & \text { O} \\ & \frac{0}{5} \\ & \frac{1}{\circ} \end{aligned}$		$\begin{aligned} & \text { Nㅔㅊ } \\ & \text { 운 } \end{aligned}$		© O 은 흔	$\begin{aligned} & \text { O} \\ & \frac{0}{ㄴ} \\ & \frac{1}{\circ} \end{aligned}$		$\begin{aligned} & \text { Nㅔㅊ } \\ & \text { 웅 } \end{aligned}$	$\tilde{0}$ 흔 흗 은 흔	O. O ㅎㅡㅡㄴ 흔			- 끛
$\begin{gathered} 1 \\ (25) \end{gathered}$	$\begin{gathered} \hline 0.63 \\ (16.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 4.53 \\ (115.0) \end{array}$	$\begin{gathered} 3.35 \\ (85.0) \end{gathered}$	4	$\begin{array}{\|c} \hline 0.55 \\ (14.0) \end{array}$	$\begin{gathered} \hline 0.63 \\ (16.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 4.53 \\ (115.0) \end{array}$	$\begin{array}{r} 3.35 \\ (85.0) \end{array}$	4	$\begin{gathered} \hline 0.55 \\ (14.0) \end{gathered}$	$\begin{aligned} & \hline 0.59 \\ & (15.0) \end{aligned}$	$\begin{array}{\|c\|} \hline 4.92 \\ (125.0) \end{array}$	$\begin{aligned} & 3.54 \\ & (90.0) \end{aligned}$	4	$\begin{aligned} & \hline 0.75 \\ & (19.0) \end{aligned}$
1.25 (32)	$\begin{array}{r} \hline 0.63 \\ (16.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5.51 \\ (140.0) \\ \hline \end{array}$	$\begin{array}{r} 3.94 \\ (85.0) \\ \hline \end{array}$	4	$\begin{array}{\|c\|} \hline 0.71 \\ (18.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 0.63 \\ (16.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5.51 \\ (140.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.94 \\ (100.0) \\ \hline \end{array}$	4	$\begin{array}{\|c} \hline 0.71 \\ (18.0) \\ \hline \end{array}$	$\begin{gathered} \hline 0.59 \\ (15.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 5.31 \\ (135.0) \\ \hline \end{array}$	$\begin{gathered} \hline 3.94 \\ (100.0) \\ \hline \end{gathered}$	4	$\begin{array}{r} \hline 0.75 \\ (19.0) \\ \hline \end{array}$
$\begin{aligned} & 1.5 \\ & (40) \end{aligned}$	$\begin{gathered} \hline 0.63 \\ (16.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 5.91 \\ (150.0) \end{array}$	$\begin{gathered} \hline 4.33 \\ (110.0) \end{gathered}$	4	$\begin{array}{\|c\|} \hline 0.71 \\ (18.0) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0.63 \\ (16.0) \end{array}$	$\begin{array}{\|c\|} \hline 5.91 \\ (150.0) \end{array}$	$\begin{array}{\|c\|} \hline 4.33 \\ (110.0) \end{array}$	4	$\begin{gathered} \hline 0.71 \\ (18.0) \end{gathered}$	$\begin{gathered} 0.59 \\ (15.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 5.51 \\ (140.0) \end{array}$	$\begin{gathered} \hline 4.13 \\ (105.0) \end{gathered}$	4	$\begin{gathered} \hline 0.75 \\ (19.0) \end{gathered}$
$\begin{gathered} 2 \\ (50) \end{gathered}$	$\begin{gathered} \hline 0.71 \\ (18.0) \\ \hline \end{gathered}$	$\begin{gathered} 6.50 \\ (165.0) \end{gathered}$	$\begin{gathered} 4.92 \\ (125.0) \end{gathered}$	4	$\begin{gathered} \hline 0.71 \\ (18.0) \end{gathered}$	$\begin{aligned} & 0.71 \\ & (18.0) \end{aligned}$	$\begin{gathered} 6.50 \\ (165.0) \end{gathered}$	$\begin{array}{c\|} \hline 4.92 \\ (125.0) \end{array}$	4	$\begin{gathered} \hline 0.71 \\ (18.0) \end{gathered}$	$\begin{gathered} 0.63 \\ (16.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 6.10 \\ (155.0) \end{array}$	$\begin{gathered} 4.72 \\ (120.0) \end{gathered}$	4	$\begin{gathered} \hline 0.75 \\ (19.0) \end{gathered}$
$\begin{aligned} & 2.5 \\ & (65) \end{aligned}$	$\begin{gathered} \hline 0.71 \\ (18.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 7.28 \\ (185.0) \\ \hline \end{array}$	$\begin{gathered} \hline 5.71 \\ (145.0) \\ \hline \end{gathered}$	4	$\begin{array}{\|c\|} \hline 0.71 \\ (18.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 0.71 \\ (18.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 7.28 \\ (185.0) \end{array}$	$\begin{array}{\|c\|} \hline 5.71 \\ (145.0) \\ \hline \end{array}$	4	$\begin{array}{\|c} \hline 0.71 \\ (18.0) \end{array}$	$\begin{gathered} 0.71 \\ (18.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 6.89 \\ (175.0) \\ \hline \end{array}$	$\begin{gathered} \hline 5.51 \\ (140.0) \\ \hline \end{gathered}$	4	$\begin{gathered} \hline 0.75 \\ (19.0) \\ \hline \end{gathered}$
$\begin{gathered} 3 \\ (80) \end{gathered}$	$\begin{array}{c\|} \hline 0.79 \\ (20.0) \end{array}$	$\begin{array}{\|c\|} \hline 7.87 \\ (200.0) \end{array}$	$\begin{gathered} 6.3 \\ (160.0) \end{gathered}$	8	$\begin{gathered} \hline 0.71 \\ (18.0) \end{gathered}$	$\begin{gathered} \hline 0.79 \\ (20.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 7.87 \\ (200.0) \end{array}$	$\begin{array}{\|c\|} \hline 6.30 \\ (160.0) \end{array}$	8	$\begin{aligned} & 0.71 \\ & (18.0) \end{aligned}$	$\begin{gathered} \hline 0.71 \\ (18.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 7.28 \\ (185.0) \end{array}$	$\begin{gathered} 5.91 \\ (150.0) \end{gathered}$	8	$\begin{gathered} \hline 0.75 \\ (19.0) \end{gathered}$
$\begin{aligned} & 3.5 \\ & (90) \end{aligned}$	-	-	-	-	-	-	-	-	-	-	$\begin{gathered} \hline 0.71 \\ (18.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 7.68 \\ (195.0) \end{array}$	$\begin{gathered} 6.30 \\ (160.0) \end{gathered}$	8	$\begin{gathered} \hline 0.75 \\ (19.0) \end{gathered}$
$\begin{gathered} 4 \\ (100) \end{gathered}$	$\begin{gathered} \hline 0.79 \\ (20.0) \end{gathered}$	$\begin{gathered} 8.66 \\ (220.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 7.09 \\ (180.0) \\ \hline \end{array}$	8	$\begin{gathered} \hline 0.71 \\ (18.0) \end{gathered}$	$\begin{array}{\|c} \hline 0.79 \\ (20.0) \\ \hline \end{array}$	$\begin{gathered} 8.66 \\ (220.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 7.09 \\ (180.0) \end{array}$	8	$\begin{gathered} \hline 0.71 \\ (18.0) \end{gathered}$	$\begin{gathered} 0.71 \\ (18.0) \end{gathered}$	$\begin{array}{\|c} 8.27 \\ (210.0) \end{array}$	$\begin{gathered} 6.89 \\ (175.0) \\ \hline \end{gathered}$	8	$\begin{gathered} 0.75 \\ (19.0) \end{gathered}$
$\begin{gathered} 5 \\ (125) \end{gathered}$	$\begin{gathered} 0.87 \\ (22.0) \end{gathered}$	$\begin{gathered} 9.84 \\ (250.0) \end{gathered}$	$\begin{gathered} 8.27 \\ (210.0) \end{gathered}$	8	$\begin{gathered} \hline 0.71 \\ (18.0) \end{gathered}$	$\begin{array}{\|c} \hline 0.87 \\ (22.0) \end{array}$	$\begin{array}{\|c\|} \hline 9.84 \\ (250.0) \end{array}$	$\begin{array}{\|c\|} \hline 8.27 \\ (210.0) \end{array}$	8	$\begin{gathered} \hline 0.71 \\ (18.0) \end{gathered}$	$\begin{gathered} 0.79 \\ (20.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 9.84 \\ (250.0) \end{array}$	$\begin{gathered} 8.27 \\ (210.0) \end{gathered}$	8	$\begin{gathered} \hline 0.91 \\ (23.0) \end{gathered}$
$\underset{(150)}{6}$	$\begin{gathered} 0.87 \\ (22.0) \end{gathered}$	$\begin{gathered} 11.22 \\ (285.0) \end{gathered}$	$\begin{gathered} 9.45 \\ (240.0) \end{gathered}$	8	$\begin{gathered} \hline 0.87 \\ (22.0) \end{gathered}$	$\begin{array}{\|c} \hline 0.87 \\ (22.0) \end{array}$	$\begin{gathered} \hline 11.22 \\ (285.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 9.45 \\ (240.0) \end{array}$	8	$\begin{gathered} \hline 0.87 \\ (22.0) \end{gathered}$	$\begin{gathered} 0.87 \\ (22.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 11.02 \\ (280.0) \end{array}$	$\begin{gathered} 9.45 \\ (240.0) \end{gathered}$	8	$\begin{gathered} \hline 0.91 \\ (23.0) \end{gathered}$
$\begin{gathered} 8 \\ (200) \end{gathered}$	$\begin{array}{\|c\|} \hline 0.87 \\ (22.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 13.39 \\ (340.0) \end{array}$	$\begin{gathered} 11.61 \\ (295.0) \end{gathered}$	8	$\begin{array}{\|c\|} \hline 0.87 \\ (22.0) \end{array}$	$\begin{gathered} \hline 0.87 \\ (22.0) \end{gathered}$	$\begin{array}{\|l\|} \hline 13.39 \\ (340.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 11.61 \\ (295.0) \end{array}$	12	$\begin{gathered} \hline 0.87 \\ (22.0) \end{gathered}$	$\begin{gathered} 0.87 \\ (22.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 12.99 \\ (330.0) \end{array}$	$\begin{array}{r} 11.42 \\ (290.0) \\ \hline \end{array}$	12	$\begin{gathered} \hline 0.91 \\ (23.0) \end{gathered}$
$\begin{gathered} 10 \\ (250) \end{gathered}$	$\begin{gathered} \hline 1.02 \\ (26.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 15.55 \\ (395.0) \\ \hline \end{array}$	$\begin{array}{c\|} \hline 13.78 \\ (350.0) \\ \hline \end{array}$	12	$\begin{array}{\|c} \hline 0.87 \\ (22.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 1.02 \\ (26.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15.94 \\ (405.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 13.98 \\ (355.0) \\ \hline \end{array}$	12	$\begin{array}{\|c} \hline 1.02 \\ (26.0) \\ \hline \end{array}$	$\begin{gathered} \hline 0.95 \\ (24.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 15.75 \\ (400.0) \\ \hline \end{array}$	$\begin{gathered} 13.98 \\ (355.0) \\ \hline \end{gathered}$	12	$\begin{gathered} \hline 0.98 \\ (25.0) \\ \hline \end{gathered}$
$\begin{gathered} 12 \\ (300) \end{gathered}$	$\begin{gathered} 1.02 \\ (26.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 17.52 \\ (445.0) \\ \hline \end{array}$	$\begin{gathered} 15.75 \\ (400.0) \end{gathered}$	12	$\begin{gathered} \hline 0.87 \\ (22.0) \end{gathered}$	$\begin{array}{\|c} 1.02 \\ (26.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 18.11 \\ (460.0) \end{array}$	$\begin{gathered} 16.14 \\ (410.0) \end{gathered}$	12	$\begin{gathered} 1.02 \\ (26.0) \end{gathered}$	$\begin{gathered} 0.95 \\ (24.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 17.52 \\ (445.0) \end{array}$	$\begin{array}{r} 15.75 \\ (400.0) \end{array}$	16	$\begin{gathered} 0.98 \\ (25.0) \end{gathered}$
$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{gathered} \hline 1.10 \\ (28.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 19.88 \\ (505.0) \\ \hline \end{array}$	$\begin{gathered} 18.11 \\ (460.0) \\ \hline \end{gathered}$	16	$\begin{array}{\|c\|} \hline 0.87 \\ (22.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.10 \\ (28.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 20.47 \\ (520.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 18.50 \\ (470.0) \\ \hline \end{array}$	16	$\begin{array}{\|c} \hline 1.02 \\ (26.0) \\ \hline \end{array}$	$\begin{gathered} 1.02 \\ (26.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 19.29 \\ (490.0) \\ \hline \end{array}$	$\begin{array}{r} 17.52 \\ (445.0) \\ \hline \end{array}$	16	$\begin{gathered} \hline 0.98 \\ (25.0) \\ \hline \end{gathered}$
$\begin{gathered} 16 \\ (400) \end{gathered}$	$\begin{array}{\|c} \hline 1.18 \\ (30.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 22.24 \\ (565.0) \\ \hline \end{array}$	$\begin{gathered} 20.28 \\ (515.0) \\ \hline \end{gathered}$	16	$\begin{array}{\|c\|} \hline 1.02 \\ (26.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 1.18 \\ (30.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 22.83 \\ (580.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 20.67 \\ (525.0) \\ \hline \end{array}$	16	$\begin{array}{\|c} \hline 1.18 \\ (30.0) \\ \hline \end{array}$	$\begin{array}{r} \hline 1.10 \\ (28.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 22.05 \\ (560.0) \\ \hline \end{array}$	$\begin{gathered} 20.08 \\ (510.0) \\ \hline \end{gathered}$	16	$\begin{array}{r} 1.06 \\ (27.0) \\ \hline \end{array}$
$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{aligned} & \hline 1.18 \\ & (30.0) \end{aligned}$	$\begin{gathered} 24.21 \\ (615.0) \end{gathered}$	$\begin{gathered} 22.24 \\ (565.0) \end{gathered}$	20	$\begin{gathered} \hline 1.02 \\ (26.0) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.18 \\ (30.0) \end{array}$	$\begin{gathered} 25.20 \\ (640.0) \end{gathered}$	$\begin{gathered} 23.03 \\ (585.0) \end{gathered}$	20	$\begin{array}{\|c\|} \hline 1.18 \\ (30.0) \end{array}$	$\begin{gathered} 1.18 \\ (30.0) \end{gathered}$	$\begin{gathered} 24.41 \\ (620.0) \end{gathered}$	$\begin{gathered} 22.24 \\ (565.0) \end{gathered}$	20	$\begin{gathered} \hline 1.06 \\ (27.0) \end{gathered}$
$\begin{gathered} 20 \\ (500) \end{gathered}$	$\begin{array}{\|c} \hline 1.18 \\ (30.0) \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 26.38 \\ (670.0) \\ \hline \end{array}$	$\begin{gathered} 24.41 \\ (620.0) \\ \hline \end{gathered}$	20	$\begin{array}{\|c\|} \hline 1.02 \\ (26.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 1.18 \\ (30.0) \end{array}$	$\begin{array}{\|l\|} \hline 28.15 \\ (715.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 25.59 \\ (650.0) \\ \hline \end{array}$	20	$\begin{array}{\|c} \hline 1.30 \\ (33.0) \\ \hline \end{array}$	$\begin{gathered} \hline 1.18 \\ (30.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 26.57 \\ (675.0) \\ \hline \end{array}$	$\begin{gathered} 24.41 \\ (620.0) \\ \hline \end{gathered}$	20	$\begin{gathered} 1.06 \\ (27.0) \\ \hline \end{gathered}$
$\begin{gathered} 24 \\ (600) \end{gathered}$	$\begin{array}{\|c} \hline 1.18 \\ (30.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 30.71 \\ (780.0) \\ \hline \end{array}$	$\begin{gathered} 28.54 \\ (725.0) \\ \hline \end{gathered}$	20	$\begin{array}{\|c\|} \hline 1.18 \\ (30.0) \end{array}$	$\begin{array}{\|c} \hline 1.18 \\ (30.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 33.07 \\ (840.0) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 30.31 \\ (770.0) \\ \hline \end{array}$	20	$\begin{array}{\|c} \hline 1.42 \\ (36.0) \\ \hline \end{array}$	$\begin{gathered} \hline 1.18 \\ (30.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 31.30 \\ (795.0) \\ \hline \end{array}$	$\begin{array}{r} 28.74 \\ (730.0) \end{array}$	24	$\begin{array}{r} 1.30 \\ (33.0) \\ \hline \end{array}$
$\begin{gathered} 30 \\ (750) \end{gathered}$	$\begin{aligned} & \hline 1.26 \\ & (32.0) \end{aligned}$	$\begin{gathered} 37.99 \\ (965.0) \end{gathered}$	$\begin{gathered} 35.43 \\ (900.0) \end{gathered}$	24	$\begin{array}{\|c} \hline 1.30 \\ (33.0) \end{array}$	$\begin{gathered} \hline 1.26 \\ (32.0) \end{gathered}$	$\begin{gathered} 38.19 \\ (970.0) \end{gathered}$	$\begin{gathered} 35.43 \\ (900.0) \end{gathered}$	24	$\begin{gathered} \hline 1.42 \\ (36.0) \end{gathered}$	$\begin{aligned} & \hline 1.26 \\ & (32.0) \end{aligned}$	$\begin{gathered} 38.19 \\ (970.0) \end{gathered}$	$\begin{aligned} & \hline 35.07 \\ & (900.0) \end{aligned}$	24	$\begin{aligned} & 1.30 \\ & (33.0) \end{aligned}$

Drilling Chart for Bolting Requirements

Drilling Chart for Balting Requirements continued...

A - Flange/Beaded End Thickness (Approximuted Figure)
B - Adiocent Mating Flange Thickness (By Oihers)
C - Control Unit Plate Thickness
D - Double Nut Thickness is detemined by Control Rod Diameter

Limit Rads

Definition

A control unit assembly is a system of two or more control rod units (limit rods, tie rods or compression sleeves) placed accoss an expansion joint from flange to flange to minimize possible damage caused by excessive motion of a pipeline. The control unit assemblies can be set ot the maximum allowable expansion and/or contraction of the rubber expansion joint. When used in this manner, control units are an addifional sofety factor and can minimize possible damage to adjacent equipment.
Rubber expansion joints should be installed between two fixed anchor points in a piping system. The pipe system must be rigilly anchored on both sides of the expansion joint to control expansion or contraction of the line. Piping anchors must be capable of withstanding the line thrusts generated by internal pressure or wide temperature fluctuations.

When proper anchoring cannot be provided, CONTROL UNITS ARE REQUIRED. For un-anchored piping systems nuts shall be tightenend snug against rod plate to prevent over-extension due to pressure thrust created by expansion joint. Refer to "Thrust Factoo" in Table 2, note 5 in this manual. Please also see Table 7 for number of control rods recommended based on maximum serge for test pressure of the system.

Listed below are three (3) control unit configurations supplied by PROCO and are commonly used with rubber expansion joints in piping systems.

Known as a LIMIT ROD, this control unit configuration will allow an exponsion joint to extend to a predetermined extension setting. Nuts shall be fieldiset to no more than the moximum allowable extension movement of a rubber expansion joint (unless used in an un-unchored system). Refer to Table 2 in this manual for allowable movement capabilifies. Spherical washers can also be furnished (upon request) to combat any "nutito-plate" binding during offset. Consult the systems engineer for proper nut settings prior to system operation.

Known as a LIMIT/CONTROL ROD, this control unit configuration is used to allow specified pipe expansion (expansion joint axial compression) and pipe contraction (expansion joint axial extension) movements. Nuts shall be field set to no more than the maximum allowable extension (unless used in an un-anchored pipe system) or compression of a rubber expansion joint. Refer to Table 2 in this manual for allowable movement capabilities. Internal and external nuts can also be field-set to allow for no movement in the horizontal plane. This setting will allow the rubber to move laterally while keeping exponsion joint thrust forces low on adjacent equipment. Spherical washers can also be furnished (upon request) to combot ony potentiol "nuutto-plate" binding during offset. Limit/Control rods with infernal nuts must be specified at the fime of inquiry. Consult the systems engineer for proper nut settings prior to system operation.

Known as a COMPRESSION SLEEVE, this configuration is used to allow for specified pipe expansion (expansion joint axial compression) and pipe contraction (expansion joint extension) movements. Nuts shall be field-set to no more than the maximum allowable extension (unless used in on un-anchored pipe system) of a rubber exponsion joint. Refer to Table 2 in this manual for allowable movement capabilifies. PROCO will manufacture each compression sleeve to allow for no axial movement unless otherwise specified by the purchaser. Compression sleeves shall be field-timmed to meet required allowable axial movement as sef forth by system requirements. Spherical washers can also be furnished (upon request) to combat any potentiol "nutto-plate" binding duing offset. Consult the systems
engineer for proper sleeve lengths prior to system operation.

The number of rods, control rod diameters and control rod plate thicknesses are important considerations when specifying control units for an application. As a minimum, specifing engineers or purchasers shall follow the guidelines as set forth in Appendix C of the Fluid Sealing Association's Technical Handbook, Seventh Edition. PROCO engineers its control unit assemblies to system requirements. Our designs incorporate an allowable stress of 65% of material yield for each rod and plate (rod and plate material to be specified by purchaser). Thereforere, it is important to provide pressure and temperature ratiings to PROCO when requesting control units for rubber expansion joints. It is also important to provide adjacent moting flange thickness or moting specifications to ensure correct rod lengths are provided.

1. Assemble expansion joint between pipe flanges in its manufactured face-to-face length.
2. Assemble control rod plates behind pipe flanges as shown. Flange bolts or allithread studs through the control rod plate must be longer to accommodate the plate thickness. Control rod plates should be equally spoced around the flange. Depending upon the size and pressure rating of the system, $2,3,4$, or more control/limit rods may be required. Refer to Table 4 in this manual or to the Fluid Sealing Association's Technical Handbook, Seventh Edition, for control rod pressure ratings.
3. Insert control/imit rods through top plate holes. Steel flat washers are to be positioned at outer plate surface.
4. If a single nut per unit is funnished, position this nut so that there is a gap between the nut and the steel flat washer. This gap is equal to the join's maximum extension (commencing with the nominal face-to-face lenghth). To lock this nut in position, either "stoke" the thread in two places or tack weld the nut to the rod. If two nuts are supplied, the nuts will create a "jamming" effect to prevent loosening. (Nuts should be snug agoinst the flat washer and control rod plate when piping system is un-onchored.)
Note: Consult the manufacturer if there are any questions as to the rated compression and elongation. These two dimensions are critical in setting the nuts and sizing the compression pipe sleeve (if supplied).
5. If there is a requirement for compression pipe sleeves, an ordinary pipe moy be used, sized in length to allow the joint to be compressed to its normal limit.
6. If there is a requirement for optional spherical washers, these washers are to be positioned ot the inner and/or outer plate sufface and backed up by movable double nuts.

Limit Rads continued...

Table 5:
Control Units/Unanchored
Control Units must be installed when pressures
(fest \bullet design • surge • operating) exceed rating below:

Pipe Size	Series 242 P.S.I.G.
$\mathbf{1 "}^{\text {" }}$ thru $\mathbf{4 "}^{\prime \prime}$	135
$\mathbf{5}^{\prime \prime}$ thru $\mathbf{1 0}^{\prime \prime}$	135
$\mathbf{1 2}^{\prime \prime}$ thru $\mathbf{1 4}^{\prime \prime}$	90
$\mathbf{1 6}^{\text {" }}$ thru $\mathbf{2 4 "}^{\prime \prime}$	45
$\mathbf{3 0}$	

Table 6:	Maximum Surge or Test Pressure of the System

Nominal Pipe Size Expansion Joint I.D. Inch /(mm)		Number of Control Rods Recommended			
		2	4	6	8
1	(25)	949	-	-	-
1.25	(32)	830	-	-	-
1.5	(40)	510	-	-	-
2	(50)	661	-	-	-
2.5	(65)	529	-	-	-
3	(75)	441	-	-	-
4	(100)	311	622	-	-
5	(125)	235	470	-	-
6	(150)	186	371	-	-
8	(200)	163	326	-	-
10	(250)	163	325	488	-
12	(300)	160	320	481	-
14	(350)	112	223	335	-
16	(400)	113	227	340	453
18	(450)	94	187	281	375
20	(500)	79	158	236	315
24	(600)	74	147	221	294
30	(750)	70	141	211	281

Note:
Pressures listed above do not relate to the actual design pressure of the expansion joint products, but are the maximum surge or pressure for a specific control rod nominal pipe size.

Installation Instructions for Non-Metallic Expansion

Make sure the expansion joint rating for temperature, pressure, vacuum ${ }^{\star}$, movements and selection of elastomeric materials match the system requirements. Contact the manufacturer if the system requirements exceed those of the expansion joint selected. (*Vacuum service for spherical rubber connectors: Vacuum rating is based on neutral installed length. These products should not be installed "extended" on vacuum applications.)

Exponsion joints are not designed to make up for piping misalignment errors. Piping misalignment should be no more than $1 / 8^{" \prime}$ in any direction. Misalignment of an expansion joint will reduce the rated movements and can induce severe stress of the moterial properties, thus cuusing reduced service life or premature foilue.

Expansion joints should be located as close as possible to anchor points with proper pipe guides. Install expansion joints only on striaght runs between anchors. It is recommended that control rods be installed on the expansion joint to prevent excessive movements from occuring due to pressure thrust of the line.

Piping must be supported so expansion joints do not carry any pipe weight.

Install the expansion joint against the mating pipe flanges and install bolis so that the bolt head is agoinst the exponsion joint flange. Flange-to-flange dimension of the expansion joint must motch the breech opening*. (*A spheircal rubber connector must be pre-compressed $1 / 8^{\prime \prime}$ to $3 / 16^{\prime \prime}$ duing installorion in order to obtain a correct installed face-tofofce dimension.)
Moke sure the moting flanges are clean and are a flatfoced type. When ottaching beaded end flange exponsion joints to raised face flanges, the use of composite gaskets are required to prevent metal flange foces from cuting rubber bead during installation.
Never install expansion joints next to wofer type check or butterfly valves.

Table 8 shows the recommended torque values for non-metallic expansion joints with beaded end type-flanges: Tighten bolts in stages by alternating around the flange. Use the recommended torque values in Table 8 to achieve a good seal. Never tighten an expansion joint to the point that there is metal-to-metal contact between the expansion joint flanges and the moting flanges. A slight bulge in the rubber beaded end should create a flush tight seal.
Note: Torque values are approximate due to mating flange suffaces, installation offsets, operating pressures and environmental condifions.

Ideal storage is in a warehouse with a relatively dry, cool location. Store flanges face down on a pallet or wooden plafform. Do not store other heavy items on top of the expansion joints. Ten year shafl life can be expected with ideal condifions. If storage must be outdoors, place on a wooden plafform and joints should not be in contact with the ground. Cover with a tarpaulin.

Do not lift with ropes or bars through the bolt holes. If lifing through the bore, use padding or a soddle to distribute the weight. Make sure cables or forklift tines do not contact the rubber. Do not let expansion joints sit verically on the edges of the flanges for any period of time.
A. Do not insulate/cover over a rubber expansion joint. This prevents inspection of the tightmess of the joint boling.
B. It is acceptable (but not necessary) to lubricate the expansion joint beaded end with a thin film of graphite dispersed in glycein or water at time of installation to prevent damoge.
C. Do not weld in the near vicinity of a non-metallic joint.
D. If expansion joints are to be installed underground, or will be submerged in water, contact monufacturer for specific recommendations.
E. If the exponsion joint will be instolled outdoors, make sure the cover material will withstand ozone, sunlight, etc.
F. Check the tightness of flanges two or three weeks offer installation ond recighten if necessary. Refer to Notes in Pora 6 . Boling Torque.
G. Expansion joint installation should be conducted by an authorized and qualified pipe fitter.
H. While all Proco expansion joints are guaranteed for a period of one year and designed for many years of service, it is suggested that expansion joints be routinely inspected based on service condifions.
Warning: Expansion joints mav operate in pipelines or equipment carrying fluids and/or gasses at elevated temperature and pressures and may transport hazardous materials. Precautions should be token to protect personnel in the event of leakage or splash. Rubber joints should not be installed in areas where inspection is impossible. Make sure proper drainage is available in the event of leakage when operating personnel are not available.

Joints with Beaded End Flanges

Table 7:	Boli-Torque				
Nominal Pipe Size Expansion Joint I.D. Inch /(mm)	$\begin{gathered} \text { Step } 1 \\ \text { F-LBS } \\ (\mathrm{Nm}) \end{gathered}$	Rest	$\begin{aligned} & \text { Step 2 } \\ & \text { F-LBS } \\ & (\mathrm{Nm}) \end{aligned}$	Rest	$\begin{aligned} & \text { Step } 3 \\ & \text { F-LBS } \\ & (\mathrm{Nm}) \end{aligned}$
$\begin{gathered} 1 \\ (25) \end{gathered}$	$\begin{gathered} 18 \\ (25) \end{gathered}$	$\begin{aligned} & 30 \\ & \mathrm{Min} \end{aligned}$	$\begin{gathered} 30 \\ (40) \end{gathered}$	$\begin{array}{\|l} 60 \\ \text { Min } \end{array}$	$\begin{aligned} & 45-60 \\ & (60-80) \end{aligned}$
$\begin{aligned} & 1.25 \\ & (32) \end{aligned}$	$\begin{gathered} 18 \\ (25) \end{gathered}$	$\begin{array}{\|l\|} \hline 30 \\ \text { Min } \end{array}$	$\begin{gathered} 30 \\ (40) \end{gathered}$	$\begin{array}{\|l} 60 \\ \text { Min } \end{array}$	$\begin{aligned} & 45-60 \\ & (60-80) \end{aligned}$
$\begin{aligned} & 1.5 \\ & (40) \end{aligned}$	$\begin{gathered} 18 \\ (25) \end{gathered}$	$\begin{aligned} & 30 \\ & \text { Min } \end{aligned}$	$\begin{gathered} 30 \\ (40) \end{gathered}$	$\begin{array}{\|l} \hline 60 \\ \text { Min } \end{array}$	$\begin{aligned} & 45-60 \\ & (60-80) \end{aligned}$
$\begin{gathered} 2 \\ (50) \end{gathered}$	$\begin{gathered} 18 \\ (25) \end{gathered}$	$\begin{aligned} & 30 \\ & \text { Min } \end{aligned}$	$\begin{array}{r} 30 \\ (40) \end{array}$	$\begin{aligned} & 60 \\ & \text { Min } \end{aligned}$	$\begin{aligned} & 45-60 \\ & (60-80) \end{aligned}$
$\begin{aligned} & 2.5 \\ & (65) \end{aligned}$	$\begin{gathered} 18 \\ (25) \end{gathered}$	$\begin{aligned} & 30 \\ & \mathrm{Min} \end{aligned}$	$\begin{gathered} 35 \\ (50) \end{gathered}$	$\begin{array}{\|l} 60 \\ \text { Min } \end{array}$	50-60 (70.80)
$\begin{gathered} \mathbf{3} \\ (80) \end{gathered}$	$\begin{gathered} 25 \\ (35) \end{gathered}$	$\begin{aligned} & 30 \\ & \text { Min } \end{aligned}$	$\begin{gathered} 45 \\ (60) \end{gathered}$	$\begin{array}{\|l} 60 \\ \text { Min } \end{array}$	$\begin{array}{\|c} \hline 60-75 \\ (80-100) \end{array}$
$\begin{aligned} & 3.5 \\ & (90) \end{aligned}$	$\begin{gathered} 25 \\ (35) \end{gathered}$	$\begin{array}{\|l\|} \hline 30 \\ \text { Min } \end{array}$	$\begin{gathered} 45 \\ (60) \end{gathered}$	$\begin{array}{\|l} 60 \\ \text { Min } \end{array}$	$\begin{array}{\|c} \hline 60-75 \\ (80-100) \end{array}$
$\begin{gathered} 4 \\ (100) \end{gathered}$	$\begin{gathered} 25 \\ (35) \end{gathered}$	$\begin{array}{\|l\|} 30 \\ \text { Min } \end{array}$	$\begin{gathered} 45 \\ (60) \end{gathered}$	$\begin{array}{\|l} \hline 60 \\ \text { Min } \end{array}$	$\begin{array}{\|c} \hline 60-75 \\ (80-100) \end{array}$
$\begin{gathered} \mathbf{5} \\ (125) \end{gathered}$	$\begin{gathered} 25 \\ (35) \end{gathered}$	$\begin{aligned} & 30 \\ & \text { Min } \end{aligned}$	$\begin{gathered} 45 \\ (60) \end{gathered}$	$\begin{array}{\|l} \hline 60 \\ \text { Min } \end{array}$	$\begin{aligned} & 60-75 \\ & (80-100) \end{aligned}$
$\begin{gathered} \mathbf{6} \\ (150) \end{gathered}$	$\begin{array}{r} 30 \\ (40) \end{array}$	$\begin{aligned} & 30 \\ & \mathrm{Min} \end{aligned}$	$\begin{gathered} 50 \\ (70) \end{gathered}$	$\begin{aligned} & 60 \\ & \text { Min } \end{aligned}$	$\begin{gathered} 60-75 \\ (80-100) \end{gathered}$
$\begin{gathered} 8 \\ (200) \end{gathered}$	$\begin{gathered} 30 \\ (40) \end{gathered}$	$\begin{aligned} & 30 \\ & \mathrm{Min} \end{aligned}$	$\begin{array}{r} 50 \\ (70) \\ \hline \end{array}$	$\begin{array}{\|l\|l} 60 \\ \mathrm{Min} \end{array}$	$\begin{array}{\|c\|} \hline 60-75 \\ (80-100) \end{array}$
$\begin{gathered} 10 \\ (250) \end{gathered}$	$\begin{gathered} 30 \\ (40) \end{gathered}$	$\begin{aligned} & 30 \\ & \mathrm{Min} \end{aligned}$	$\begin{gathered} 50 \\ (70) \end{gathered}$	$\begin{aligned} & 60 \\ & \text { Min } \end{aligned}$	$\begin{array}{\|c\|} \hline 75-85 \\ (100-115) \end{array}$
$\begin{gathered} 12 \\ (300) \end{gathered}$	$\begin{gathered} 30 \\ (40) \end{gathered}$	$\begin{aligned} & 30 \\ & \mathrm{Min} \end{aligned}$	$\begin{array}{r} 50 \\ (70) \end{array}$	$\begin{array}{\|l\|} \hline 60 \\ \text { Min } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 75-85 \\ (100-115) \end{array}$
$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{gathered} 30 \\ (40) \end{gathered}$	$\begin{array}{\|l\|l} 30 \\ \mathrm{Min} \end{array}$	$\begin{array}{r} 60 \\ (80) \\ \hline \end{array}$	$\begin{array}{\|l} 60 \\ \mathrm{Min} \end{array}$	$\begin{array}{\|c\|} \hline 75.95 \\ (110-130) \end{array}$
$\begin{gathered} 16 \\ (400) \end{gathered}$	$\begin{gathered} 30 \\ (40) \end{gathered}$	$\begin{aligned} & 30 \\ & \mathrm{Min} \end{aligned}$	$\begin{gathered} 60 \\ (80) \end{gathered}$	$\begin{array}{\|l} \hline 60 \\ \text { Min } \end{array}$	$\begin{array}{\|c\|} \hline 75.95 \\ (110-130) \end{array}$
$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{array}{r} 30 \\ (40) \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & \mathrm{Min} \end{aligned}$	$\begin{gathered} 60 \\ (80) \end{gathered}$	$\begin{array}{\|l\|l} 60 \\ \mathrm{Min} \end{array}$	$\begin{array}{\|c} 90-95 \\ (120-130) \end{array}$
$\begin{gathered} 20 \\ (500) \end{gathered}$	$\begin{array}{r} 30 \\ (40) \\ \hline \end{array}$	$\begin{array}{\|l} 30 \\ \text { Min } \end{array}$	$\begin{array}{r} 65 \\ (90) \\ \hline \end{array}$	$\begin{array}{\|l\|l} 60 \\ \mathrm{Min} \end{array}$	$\begin{array}{\|c} 95-185 \\ (130-250) \end{array}$
$\begin{gathered} 24 \\ (600) \end{gathered}$	$\begin{gathered} 30 \\ (40) \end{gathered}$	$\begin{array}{\|l\|} \hline 30 \\ \text { Min } \end{array}$	$\begin{gathered} 65 \\ (90) \end{gathered}$	$\begin{array}{\|l} 60 \\ \text { Min } \end{array}$	$\begin{array}{\|l} \hline \begin{array}{l} 95-185 \\ (130-250) \end{array} \end{array}$
$\begin{gathered} 30 \\ (750) \end{gathered}$	$\begin{gathered} 30 \\ (40) \end{gathered}$	$\begin{array}{\|l\|} 30 \\ \mathrm{Min} \end{array}$	$\begin{gathered} 65 \\ (90) \end{gathered}$	$\begin{array}{\|l} 60 \\ \text { Min } \end{array}$	$\begin{array}{\|c} \hline 95-220 \\ (130-300) \end{array}$

Wrong:
Uneven end of pipe can cause damage to rubber.

Wrong:
Inner edge of flanges damages rubber.

Tighten opposing nuts/bolis gradually according to the following sequence

2431 North Wigwam Dr. (95205)
P.O. Box 590 • Stockton, CA 95201-0590 • USA
 Association

Industrial Distributor Co-op

