

Pruca's Headquarters

Largest Inventory of Expansion Joints and Check Valves

Proco Stule RC \& RE Rubher Joints

Proco Style RC \& RE Rubber Expansion Joints are designed for piping systems to absorb pipe movements, relieve stress, reduce system noise/ vibration, compensate for misalignment/offset and to protect rotating mechanical equipment against start-up surge forces.
The Style RC-231 concentric rubber expansion joint is a single open wide arch type. Concentric in design, each flange-end shares the same common center-line.
The Style RCFA-231 concentric rubber expansion joint is a single filled wide arch design generally used for slurry or abrasive services.
This design has 50% less movement than the open arch design.
The Style RE-231 eccentric rubber expansion joint is a single open wide arch type. Eccentric in design, the expansion joint body tapers on one side transitioning two different flange sizes.
The Style REFA-231 eccentric rubber expansion joint is a single filled wide arch design generally used for slurry or abrasive services. This design has 50% less movement than the open arch design.
Also available from Proco Products, Inc. are the old narrow arch styles RC-221, RCFA-221, RE-221 and REFA-221 with shorter overall lengths.

Features and Benefits:

Absorbs Directional Movement

Thermal movements appear in any rigid pipe system due to temperature changes. The Style RC 231 and RE 231 wide arch joints allow for axial compression or axial extension, lateral deflection as well as angular and torsional movements. (Note: Rated movements in this publication are based on one plane movements.
Multiple movement conditions are based on a multiple movement calculation. Contact Proco for information when designing multiple pipe movements.)
Less Turbulence or Material Entrapment
The Style RC 231 and RE 231 expansion joints are manufactured with the integral rubber flange joining the body ot a true 90° angle. This ensures the product will install snug against the mating pipe flange free of voids creating less turbulence in the pipe system. For applications where 20% or more solids are present, use the filled arch RCFA 231 and REFA 231 expansion joints for smooth bore transition with no possibility for material entrapment.
Absorbs Vibration, Noise and Shock
The Proco Style RC 231 and RE 231 rubber expansion joints effectively dampen and insulate downstream piping against the transmission of noise and vibration generated by mechanical equipment. Noise and vibrations caused by equipment can cause stress in pipe, pipe guides, anchors and other equipment downstream. The Style RC 231 and RE 231 expansion joints will help relieve noise and vibration occurrences in a pipe system. Water hammer and pumping impulses can also cause strain, stress or shock to a piping system. Install the Style RC 231 and RE 231 to help compensate for these system pressure spikes.
Compensates for Misalignment
Rubber expansion joints are commonly used by contracctors and plant personnel to allow for slight pipe misalignment during installation of new piping and or replacement applications. (Although rubber expansion joints can be made with permanent offsets, it is suggested that piping misalignments be limited to no more than $1 / 2$ the rated catalog movement. Contact Proco for resultant movement capability.)
Wide Service Range and Less Weight
Engineered to operate up to 200 PSIG (nominal size dependent) or up to 250° F (elastomer dependent), the Series RC 231 and RE 231 can be specified for a wide range of piping system requirements. The Series RC 231 and RE 231 rubber expansion joints are constructed in various elastomers with rubber impregnated polyester tire cord and ASTM wire to make up the pressure restraining member. This lightweight design installs easily and costs less to ship.

Material Identification

All RC 231 and RE 231 expansion joints are strip branded with cure dates and elastomer designations. All Neoprene Tube/Neoprene Cover (NN) and Nitrile Tube/Neoprene Cover (NP)elastomer designated joints meet the Coast Guard Requirements and conform to ASTM F 1123-87.
Large Inventory
Proco Products, Inc. maintains one of the largest inventories
of rubber expansion joints in the world.
Please contact us for price and availability.

Protecting Piping and Equipment Systems from Stress/Motion

Table 1: Available Materials - Temperatures
For Specific Chemical Compatibilities, See:

PROCO "Chemical To Elastomer Guide"

Proco Material Code	Cover 1,2 Elastomer	Tube Elastomer	Maximum Operating Temp. ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	Branding Label Color	F.S.A. Material Class
BB	Chlorobutyl	Chlorobutyl	$250^{\circ}\left(121^{\circ}\right)$	Black	STD. III
E	EPDM	EPDM	$250^{\circ}\left(121^{\circ}\right)$	Red	STD. III
EQ	EPDM	FDA-EPDM	$250^{\circ}\left(121^{\circ}\right)$	Red ${ }^{3}$	STD. II
NH	Neoprene	CSM	$212^{\circ}\left(100^{\circ}\right)$	Green	STD. II
NN	Neoprene	Neoprene	$225^{\circ}\left(107^{\circ}\right)$	Blue	STD. II
NF	Neoprene	FDA-Neoprene	$225^{\circ}\left(107^{\circ}\right)$	Blue ${ }^{3}$	STD. II
NP	Neoprene	Nitrile	$212^{\circ}\left(100^{\circ}\right)$	Yellow	STD. II
NR	Neoprene	Natural Rubber	180° (82 ${ }^{\circ}$)	White	STD. 1

Information subject to change without notice.

All Products are reinforced with Polyester Tire Cord

1. Expansion Joint "Cover" can be coated with CSM UV Resistant Coating.
2. All NN \& NP elastomer designated joints meet the Coast Guard Requirements and conform to ASTM F 1123-87 and are marked accordingly.
3. Branding Label will be marked as "Food Grade".
4. All elastomers above are not intended for steam service

Style RC-Re1 Performance Data

Table 2: Sizes - Movements - Operating Conditions - Weights

Concentric Joint Size	Neutral Length		RC-231 Movement Capability ${ }^{1}$ From Neutral Position:					Operating ${ }^{2}$ Conditions			$\begin{aligned} & \text { Weights }{ }^{3} \\ & \text { lbs/(kgs) } \end{aligned}$	
$\begin{aligned} & \text { Nominal } \\ & \text { I.D. X I.D. } \\ & \text { (lnch) } \end{aligned}$	Min. (Inch)	Max. (Inch)	Axial Compression Inch/(mm)	Axial Extension mhh/(mm)	\pm Lateral Deflection Inch/(mm)	\pm Angular ${ }^{4}$ Deflection Degrees	Torsional ${ }^{5}$ Rotation Degrees					cos
2 X 1	8	18	$\begin{array}{r} 1.0 \\ \text { (25) } \\ \hline \end{array}$	$\begin{array}{r} 0.5 \\ \text { (13) } \\ \hline \end{array}$	$\begin{array}{r} 0.5 \\ \text { (13) } \\ \hline \end{array}$	25.0	2.0	4.83 (31)	200	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 5.0 \\ (2.3) \end{gathered}$	$\begin{gathered} 7.0 \\ (3.2) \\ \hline \end{gathered}$
2×1.5	8	18	$\begin{aligned} & 1.0 \\ & \text { (25) } \end{aligned}$	$\begin{array}{r} 0.5 \\ \text { (13) } \\ \hline \end{array}$	$\begin{array}{r} 0.5 \\ \text { (13) } \\ \hline \end{array}$	25.0	2.0	$\begin{aligned} & 5.85 \\ & (38) \end{aligned}$	$\begin{aligned} & 200 \\ & \text { (14) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 6.0 \\ & (2.7) \end{aligned}$	$\begin{gathered} 7.0 \\ (3.2) \\ \hline \end{gathered}$
2.5×1.5	8	18	$\begin{aligned} & 1.0 \\ & (25) \\ & \hline \end{aligned}$	$\begin{array}{r} 0.5 \\ 0.5 \\ (13) \\ \hline \end{array}$	$\begin{gathered} 0.5 \\ \hline 0.5 \\ (13) \\ \hline \end{gathered}$	20.0	2.0	$\begin{aligned} & 6.97 \\ & (45) \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ \hline(660) \\ \hline \end{gathered}$	$\begin{aligned} & 6.0 \\ & (2.7) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 8.0 \\ (3.6) \\ \hline \end{array}$
2.5 X 2	8	18	$\begin{aligned} & 1.0 \\ & \text { (25) } \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	20.0	2.0	$\begin{aligned} & \hline 8.19 \\ & (53) \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 6.0 \\ & (2.7) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & (3.6) \\ & \hline \end{aligned}$
3×1	8	18	$\begin{aligned} & 1.4 \\ & (36) \\ & \hline \end{aligned}$	$\begin{gathered} 0.7 \\ (18) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	24.0	2.0	$\begin{aligned} & 6.97 \\ & (45) \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7.0 \\ & \text { (3.2) } \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ (3.6) \\ \hline \end{gathered}$
3×1.5	8	18	$\begin{aligned} & 1.4 \\ & (36) \\ & \hline \end{aligned}$	$\begin{gathered} 0.7 \\ \text { (18) } \end{gathered}$	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	24.0	2.0	$\begin{aligned} & 8.19 \\ & (53) \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 8.0 \\ & (3.6) \end{aligned}$	$\begin{aligned} & 8.0 \\ & (3.6) \end{aligned}$
3×2	8	18	$\begin{aligned} & 1.4 \\ & (36) \\ & \hline \end{aligned}$	$\begin{gathered} 0.7 \\ (18) \\ \hline \end{gathered}$	$\begin{aligned} & 0.5 \\ & (13) \\ & \hline \end{aligned}$	24.0	2.0	$\begin{aligned} & 9.51 \\ & (61) \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{array}{r} 9.0 \\ (4.1) \\ \hline \end{array}$	$\begin{aligned} & 8.0 \\ & (3.6) \\ & \hline \end{aligned}$
3×2.5	8	18	$\begin{aligned} & 1.4 \\ & (36) \\ & \hline \end{aligned}$	$\begin{gathered} 0.7 \\ (18) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	24.0	2.0	$\begin{array}{\|c} \hline 10.92 \\ (70) \end{array}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.1) \\ \hline \end{gathered}$	$\begin{aligned} & 8.0 \\ & (3.6) \end{aligned}$
4×2	8	18	$\begin{aligned} & 1.4 \\ & (36) \\ & \hline \end{aligned}$	$\begin{gathered} 0.7 \\ (18) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	18.0	2.0	$\begin{gathered} 12.43 \\ (80) \end{gathered}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (4.5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & (3.6) \end{aligned}$
4×2.5	8	18	$\begin{aligned} & 1.4 \\ & (36) \\ & \hline \end{aligned}$	$\begin{gathered} 0.7 \\ (18) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	18.0	2.0	$\begin{array}{\|c} \hline 14.05 \\ \text { (91) } \end{array}$	$\begin{aligned} & 200 \\ & \text { (14) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 11.0 \\ & (5.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & \text { (3.6) } \end{aligned}$
4×3	8	18	$\begin{aligned} & 1.4 \\ & \text { (36) } \\ & \hline \end{aligned}$	$\begin{gathered} 0.7 \\ \text { (18) } \end{gathered}$	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	18.0	2.0	$\begin{array}{\|c} \hline 15.76 \\ (102) \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 12.0 \\ & (5.4) \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ (3.6) \\ \hline \end{gathered}$
5×3	8	18	$\begin{aligned} & 1.6 \\ & (41) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & \hline(20) \end{aligned}$	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	17.0	2.0	$\begin{array}{\|c} \hline 21.06 \\ (136) \end{array}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 15.0 \\ & (6.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 12.0 \\ & \text { (5.4) } \end{aligned}$
5×4	8	18	$\begin{aligned} & 1.6 \\ & (41) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { (13) } \\ & \hline \end{aligned}$	17.0	2.0	$\begin{array}{\|c} 25.33 \\ (163) \\ \hline \end{array}$	$\begin{array}{r} 190 \\ \text { (13) } \\ \hline \end{array}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{array}{\|l\|} \hline 16.0 \\ (7.3) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 12.0 \\ \text { (5.4) } \\ \hline \end{array}$
6×2	8	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{array}{r} 0.5 \\ \text { (13) } \\ \hline \end{array}$	14.0	2.0	$\begin{array}{\|l\|} \hline 21.06 \\ (136) \end{array}$	$\begin{aligned} & 190 \\ & \text { (13) } \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 15.0 \\ & (6.8) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 14.0 \\ \text { (6.4) } \\ \hline \end{array}$
6×2.5	8	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & (13) \\ & \hline \end{aligned}$	14.0	2.0	$\begin{array}{\|c} 23.15 \\ (149) \end{array}$	$\begin{aligned} & 190 \\ & \text { (13) } \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 15.0 \\ & (6.8) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 14.0 \\ \text { (6.4) } \end{array}$
6×3	8	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	14.0	2.0	$\begin{array}{\|c} 25.33 \\ (163) \end{array}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 17.0 \\ & (7.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 14.0 \\ & (6.4) \end{aligned}$
6×4	8	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{array}{r} 0.8 \\ (20) \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & (13) \\ & \hline \end{aligned}$	14.0	2.0	$\begin{gathered} 29.98 \\ (193) \end{gathered}$	$\begin{array}{r} 190 \\ \text { (13) } \\ \hline \end{array}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 17.0 \\ (7.7) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 14.0 \\ \text { (6.4) } \\ \hline \end{array}$
6×5	8	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	14.0	2.0	$\begin{array}{\|l} 35.03 \\ (226) \end{array}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 18.0 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (6.4) \end{aligned}$
8×3	8	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { (13) } \end{aligned}$	11.0	2.0	$\begin{array}{\|l} 35.03 \\ (226) \end{array}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 19.0 \\ & (8.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 22.0 \\ & (10.0) \end{aligned}$
8×4	8	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{array}{r} 0.8 \\ \hline(20) \\ \hline \end{array}$	$\begin{array}{r} 0.5 \\ \text { (13) } \\ \hline \end{array}$	11.0	2.0	$\begin{array}{\|l} \hline 40.47 \\ (261) \end{array}$	$\begin{aligned} & 190 \\ & \text { (13) } \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 19.0 \\ & (8.6) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 21.0 \\ (9.5) \end{array}$
8×5	8	18	$\begin{aligned} & 1.6 \\ & (41) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ \text { (13) } \end{gathered}$	11.0	2.0	$\begin{array}{\|l\|} \hline 46.30 \\ (299) \\ \hline \end{array}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{array}{l\|} \hline 20.0 \\ (9.1) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 22.0 \\ (10.0) \end{array}$
8 X 6	8	18	$\begin{aligned} & 1.6 \\ & (41) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ 0.5 \\ (13) \\ \hline \end{gathered}$	11.0	2.0	$\begin{array}{\|c} \hline 52.53 \\ (339) \\ \hline \end{array}$	$\begin{aligned} & 190 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} 2601 \\ 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 21.0 \\ & (9.5) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 23.0 \\ (10.4) \end{array}$
10×5	10	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { (13) } \\ & \hline \end{aligned}$	8.0	2.0	59.14 (382)	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 25.0 \\ & (11.3) \end{aligned}$	$\begin{array}{\|l\|} \hline 31.0 \\ (14.1) \end{array}$
10×6	10	18	1.6 (41)	$\begin{aligned} & \hline 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	8.0	2.0	$\begin{aligned} & 66.15 \\ & (427) \end{aligned}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 26.0 \\ & (11.8) \end{aligned}$	$\begin{array}{\|c} \hline 31.0 \\ (14.1) \end{array}$

Table 2: Sizes - Movements - Operating Conditions - Weights

Concentric Joint Size	Neutral Length		RC-231 Movement Capability ${ }^{1}$ From Neutral Position:					Operating ${ }^{2}$ Conditions			$\begin{aligned} & \text { Weights }{ }^{3} \\ & \text { llos/(kgs) } \end{aligned}$	
Nominal I.D. X I.D. (Inch)	Min. (Inch)	Max. (Inch)	Axial Compression lnch/(mm)	Axiol Extension Inch/(mm)	\pm Luteral Deflection lnch/(mm)	\pm Angular ${ }^{4}$ Deflection Degrees	$\begin{array}{\|c\|c} \text { Torsional } \\ \text { R } \\ \text { Rotation } \\ \text { Degrieas } \end{array}$		产			come
10×8	10	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{gathered} 0.8 \\ 100) \end{gathered}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	8.0	2.0	$\begin{aligned} & \hline 81.35 \\ & (525) \\ & \hline \end{aligned}$	$\begin{aligned} & 190 \\ & (13) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{array}{r} 30.0 \\ \text { (13.6) } \end{array}$	$\begin{array}{\|l\|} \hline 32.0 \\ (14.5) \\ \hline \end{array}$
12×6	10	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{gathered} 0.8 \\ 0.8 \\ \hline(20) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.5 \\ (13) \\ \hline \end{gathered}$	7.0	2.0	$\begin{array}{\|c\|} \hline 84.50 \\ (545) \\ \hline \end{array}$	$\begin{aligned} & 190 \\ & (13) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 35.0 \\ (15.9) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 35.0 \\ (15.9) \\ \hline \end{array}$
12×8	10	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	7.0	2.0	$\begin{array}{\|c} 101.57 \\ (655) \\ \hline \end{array}$	$\begin{aligned} & 190 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 39.0 \\ (17.7) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 34.0 \\ (15.4) \\ \hline \end{array}$
12×10	10	18	$\begin{aligned} & 1.6 \\ & (41) \end{aligned}$	$\begin{array}{r} 0.8 \\ \hline(20) \\ \hline \end{array}$	$\begin{aligned} & \hline 0.5 \\ & (13) \\ & \hline \end{aligned}$	7.0	2.0	$\begin{gathered} 120.22 \\ (776) \\ \hline \end{gathered}$	$\begin{aligned} & 190 \\ & \text { (13) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 42.0 \\ & (19.1) \end{aligned}$	$\begin{array}{\|l\|} \hline 29.0 \\ (13.2) \\ \hline \end{array}$
14×8	10	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{aligned} & \hline 0.8 \\ & \hline(20) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & \hline 0.5) \\ & \hline(13) \end{aligned}$	6.0	2.0	$\begin{gathered} 120.22 \\ (776) \\ \hline \end{gathered}$	$\begin{aligned} & 130 \\ & (9) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 45.0 \\ (20.4) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 34.0 \\ (15.4) \\ \hline \end{array}$
14×10	10	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{array}{r} 0.8 \\ \hline 0 \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} 0.5 \\ (13) \\ \hline \end{array} \\ \hline \end{gathered}$	6.0	2.0	$\begin{gathered} 140.43 \\ (996) \\ \hline \end{gathered}$	$\begin{aligned} & 130 \\ & \hline 190 \\ & \hline 9 \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 48.0 \\ & (21.8) \end{aligned}$	$\begin{array}{\|l\|} \hline 38.0 \\ (17.2) \\ \hline \end{array}$
14×12	10	18	$\begin{aligned} & 1.6 \\ & (41) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	6.0	2.0	$\begin{array}{\|l\|} \hline 162.21 \\ (1047) \\ \hline \end{array}$	$\begin{aligned} & 130 \\ & \hline(9) \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{aligned} & 55.0 \\ & (24.9) \end{aligned}$	$\begin{array}{\|l\|} \hline 31.0 \\ (14.1) \\ \hline \end{array}$
16×10	10	18	$\begin{aligned} & 1.6 \\ & (41) \end{aligned}$	$\begin{array}{r} 0.8 \\ (20) \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} 0.5 \\ (13) \\ \hline \end{array} \\ \hline \end{gathered}$	5.0	2.0	$\begin{array}{\|l\|} \hline 162.21 \\ (1047) \\ \hline \end{array}$	$\begin{aligned} & 115 \\ & (8) \end{aligned}$	$\begin{array}{\|c} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{array}{r} \hline 54.0 \\ (24.5) \end{array}$	$\begin{array}{\|l\|} \hline 45.0 \\ (20.4) \\ \hline \end{array}$
16×12	10	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{array}{r} 0.8 \\ (20) \\ \hline \end{array}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	5.0	2.0	$\begin{array}{\|} 185.57 \\ (1197) \\ \hline \end{array}$	$\begin{gathered} 115 \\ (8) \end{gathered}$	$\begin{array}{\|c} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{array}{r} 60.0 \\ \text { (27.2) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 42.0 \\ (19.1) \end{array}$
16×14	10	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{array}{r} 10.8 \\ (20) \\ \hline \end{array}$	$\begin{aligned} & 0,5 \\ & 0.5 \\ & (13) \end{aligned}$	5.0	2.0	$\begin{array}{\|} \hline 210.49 \\ (1358) \\ \hline \end{array}$	$\begin{aligned} & 115 \\ & 115 \\ & (8) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 26 \\ \hline(660) \\ \hline \end{gathered}$	$\begin{array}{\|l} \hline 62.0 \\ \hline(28.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 43.0 \\ (19.5) \end{array}$
18×12	10	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{array}{r} 0.8 \\ (20) \\ \hline \end{array}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	5.0	2.0	$\begin{array}{\|} \hline 210.49 \\ (1358) \\ \hline \end{array}$	$\begin{aligned} & 115 \\ & \hline(8) \end{aligned}$	$\begin{array}{\|c} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{aligned} & 64.0 \\ & (29.0) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 48.0 \\ (21.8) \end{array}$
18×14	10	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{array}{r} 0.8 \\ \hline 0 \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} 0.5 \\ (13) \\ \hline \end{array} \\ \hline \end{gathered}$	5.0	2.0	$\begin{array}{\|l\|} \hline 236.98 \\ (1529) \\ \hline \end{array}$	$\begin{aligned} & 115 \\ & \hline(8) \end{aligned}$	$\begin{array}{\|c} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{aligned} & 66.0 \\ & (29.9) \end{aligned}$	$\begin{array}{\|l\|} \hline 43.0 \\ (19.5) \\ \hline \end{array}$
18×16	10	18	$\begin{aligned} & 1.6 \\ & (41) \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ \hline 0.8 \\ \hline(20) \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} 0.5 \\ (13) \\ \hline \end{array} \\ \hline \end{gathered}$	5.0	2.0	$\begin{array}{\|c\|} \hline 265.05 \\ (1710) \end{array}$	$\begin{aligned} & 115 \\ & \hline(8) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{array}{\|l\|} \hline 70.0 \\ (31.8) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 39.0 \\ (17.7) \\ \hline \end{array}$

NOTES:

1. Concurrent Movements - Concurent movements are developed when two or more movements in a pipe system occur ot the same time.

If multiple movements exceed single arch design there moy be a need for additional arches.
To perform calculation for concurent movement when a pipe system design has more than one movement, please use the following formula:
$\frac{\text { Actual Axid Compression }}{\text { Rated Axial Compression }}+\frac{\text { Actuol Axial Extension }}{\text { Roted Axial Extension }}+\frac{\text { Actual Loterol }(X)}{\text { Roted Lateral }(X)}+\frac{\text { Actual Lateral }(Y)}{\text { Rated Lateral }(Y)}=/<1$
Calculation must be equal to or less than 1 for expansion joint to operate within concurrent movement capability.
2. Pressure rating is based on 170° F operating temperature with a $4: 1$ sufety foctor. At higher temperatures, the pressure rating is reduced slightily. Hydrostafici testing at 1.5 times rated moximum catalogue pressure or design working pressure of pipe system for 10 minutes is ovailable upon request.
3. Weights are approximate and vary due to length.
4. The degree of angular movement is based on the maximum rated extension.
5. Torsional movement is expressed when the expansion joint is at neutral length.

6. Calculation of Thrust (Thrust Factor). When expansion joints are installed in the pipeline, the static portion of the thrust is calculated as a product of the area of the I.D. of the arch of the expansion joint times the maximum pressure (design, test or surge) that will occur in the line. The result is a force expressed in pounds.
Take design, surge or test pressure X thrust factor to calculate end thrust. For filled arch configuration use the I.D. of the pipe (D) ${ }^{2}$ to calculate end thrust.
7. Parts listed at 26 " $\mathrm{Hg} / 660 \mathrm{~mm} \mathrm{Hg}$ vacuum. Vacuum rating is based on neutral installed length, without external load. Products should not be installed "extended" on vacuum applications.
8. Limit rod unit weight consists of one rod with washers, nuts, and two limit rod plates. Multiply number of limit rods needed for the application (as specified in the Fluid Sealing Association's Technical Handbook, Seventh Edifion or table 4 in this manual) to determine correct weights.
9. For plastic pipe systems utilizing the series RC, consult Proco for design considerations.
10. Larger sizes not shown in brochure are available upon request.

Style RE-R31 Performance Data

Table 3: Sizes - Movements - Operating Conditions - Weights

Eccentric Joint Size	Neutral Length		RE-231 Movement Capability 1 From Neutral Position:					Operating ${ }^{2}$ Conditions			$\begin{aligned} & \text { Weights }{ }^{3} \\ & \text { lbs/(kgs) } \end{aligned}$	
Nominal I.D. X I.D. (Inch)	Min. (Inch)	Max. (Inch)	Axial Compression Inch/(mm)	Axial Extension Inch/(mm)	\pm Lateral Deflection Inch/(mm)	\pm Angular ${ }^{4}$ Deflection Degrees	Torsional ${ }^{5}$ Rotation Degrees					年
2 X 1	8	18	$\begin{aligned} & 1.0 \\ & (25) \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	25.0	2.0	$\begin{array}{r} \hline 4.83 \\ (31) \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & (14) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{array}{r} 5.0 \\ (2.3) \\ \hline \end{array}$	7.0
2×1.5	8	18	$\begin{aligned} & 1.0 \\ & \text { (25) } \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	25.0	2.0	$\begin{aligned} & 5.85 \\ & (38) \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 6.0 \\ (2.7) \\ \hline \end{gathered}$	7.0 (3.2) 8
2.5×1.5	8	18	$\begin{aligned} & 1.0 \\ & (25) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & (13) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & (13) \\ & \hline \end{aligned}$	20.0	2.0	$\begin{aligned} & 6.97 \\ & (45) \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 3.0 \\ \text { (1.4) } \end{gathered}$	8.0 (3.6) 8
2.5×2	8	18	$\begin{array}{r} 1.0 \\ (25) \\ \hline \end{array}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	20.0	2.0	$\begin{aligned} & 8.19 \\ & (53) \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{gathered} 6.0 \\ (2.7) \end{gathered}$	8.0 (3.6) 8
3×1	8	18	$\begin{aligned} & 1.4 \\ & (36) \\ & \hline \end{aligned}$	$\begin{gathered} 0.7 \\ (18) \\ \hline \end{gathered}$	$\begin{aligned} & 0.5 \\ & (13) \\ & \hline \end{aligned}$	24.0	2.0	$\begin{aligned} & 6.97 \\ & (45) \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 7.0 \\ & (3.2) \\ & \hline \end{aligned}$	8.0 (3.6) 8
3×1.5	8	18	$\begin{aligned} & 1.4 \\ & (36) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7 \\ & \text { (18) } \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & (13) \\ & \hline \end{aligned}$	24.0	2.0	$\begin{aligned} & 8.19 \\ & \text { (53) } \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & (14) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{gathered} 8.0 \\ \text { (3.6) } \\ \hline \end{gathered}$	8.0 (3.6) 8
3×2	8	18	$\begin{aligned} & 1.4 \\ & (36) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7 \\ & (18) \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & \text { (13) } \\ & \hline \end{aligned}$	24.0	2.0	9.51 (61)	$\begin{aligned} & 200 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 9.0 \\ (4.1) \\ \hline \end{gathered}$	8.0 (3.6) 8
3×2.5	8	18	$\begin{aligned} & 1.4 \\ & 136) \\ & \hline \end{aligned}$	$\begin{gathered} 0.7 \\ (18) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	24.0	2.0	$\begin{array}{\|c} \hline 10.92 \\ (70) \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 9.0 \\ (4.1) \\ \hline \end{gathered}$	8.0 (3.6)
4×2	8	18	$\begin{aligned} & 1.4 \\ & (36) \\ & \hline \end{aligned}$	$\begin{gathered} 0.7 \\ \text { (18) } \end{gathered}$	$\begin{aligned} & 0.5 \\ & (13) \\ & \hline \end{aligned}$	18.0	2.0	$\begin{array}{\|c} \hline 12.43 \\ (80) \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 10.0 \\ \text { (4.5) } \\ \hline \end{array}$	8.0 (3.6)
4×2.5	8	18	$\begin{aligned} & 1.4 \\ & (36) \\ & \hline \end{aligned}$	$\begin{gathered} 0.7 \\ \text { (18) } \end{gathered}$	$\begin{aligned} & 0.5 \\ & (13) \\ & \hline \end{aligned}$	18.0	2.0	$\begin{array}{\|c} \hline 14.05 \\ (91) \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & (14) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11.0 \\ (5.0) \\ \hline \end{array}$	8.0 (3.6)
4×3	8	18	$\begin{aligned} & 1.4 \\ & (36) \end{aligned}$	$\begin{aligned} & 0.7 \\ & \text { (18) } \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & (13) \\ & \hline \end{aligned}$	18.0	2.0	$\begin{array}{\|l} \hline 15.76 \\ (102) \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & (14) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 12.0 \\ (5.4) \\ \hline \end{array}$	8.0 (3.6) 1.0
5×3	8	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	17.0	2.0	$\begin{array}{\|c\|} \hline 21.06 \\ (136) \end{array}$	$\begin{aligned} & \hline 190 \\ & (13) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 15.0 \\ 16.8) \\ \hline \end{array}$	12.0 (5.4)
5×4	8	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & (13) \\ & \hline \end{aligned}$	17.0	2.0	$\begin{array}{\|c} \hline 25.33 \\ (163) \\ \hline \end{array}$	$\begin{aligned} & 190 \\ & (13) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 16.0 \\ (7.3) \\ \hline \end{array}$	12.0 (5.4)
6×2	8	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { (13) } \end{aligned}$	14.0	2.0	$\begin{array}{\|c\|c\|} \hline 21.06 \\ (136) \end{array}$	$\begin{aligned} & 190 \\ & \text { (13) } \\ & \hline \end{aligned}$	$\begin{array}{r} 26 \\ (660) \\ \hline \end{array}$	$\begin{aligned} & 15.0 \\ & (6.8) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 14.0 \\ (6.4) \end{array}$
6×2.5	8	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{array}{r} 0.8 \\ \hline(20) \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & (13) \\ & \hline \end{aligned}$	14.0	2.0	$\begin{array}{\|c} \hline 23.15 \\ (149) \end{array}$	$\begin{aligned} & 190 \\ & (13) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 15.0 \\ (6.8) \\ \hline \end{array}$	14.0 (6.4)
6×3	8	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { (13) } \end{aligned}$	14.0	2.0	$\begin{array}{\|c\|} \hline 25.33 \\ (163) \\ \hline \end{array}$	$\begin{aligned} & 190 \\ & \text { (13) } \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 17.0 \\ & (7.7) \end{aligned}$	$\begin{array}{\|l} \hline 14.0 \\ (6.4) \end{array}$
6×4	8	18	$\begin{aligned} & 1.6 \\ & (41) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { (13) } \end{aligned}$	14.0	2.0	$\begin{array}{\|c\|} \hline 29.98 \\ (193) \\ \hline \end{array}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{array}{r} 26 \\ (660) \\ \hline \end{array}$	$\begin{aligned} & 17.0 \\ & (7.7) \end{aligned}$	14.0 (6.4)
6 X 5	8	18	$\begin{aligned} & 1.6 \\ & (41) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & \text { (13) } \end{aligned}$	14.0	2.0	$\begin{array}{\|l\|} \hline 35.03 \\ (226) \end{array}$	$\begin{aligned} & 190 \\ & \text { (13) } \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 18.0 \\ & (8.2) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 14.0 \\ (6.4) \\ \hline \end{array}$
8×3	8	18	1.6	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	11.0	2.0	$\begin{array}{\|l\|} \hline 35.03 \\ (226) \end{array}$	$\begin{array}{r} 190 \\ \text { (13) } \\ \hline \end{array}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 19.0 \\ & (8.6) \\ & \hline \end{aligned}$	22.0 $10.0)$
8×4	8	18	$\begin{aligned} & 1.6 \\ & (41) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ 0.5 \\ (13) \\ \hline \end{gathered}$	11.0	2.0	$\begin{aligned} & 40.47 \\ & (261) \\ & \hline \end{aligned}$	$\begin{aligned} & 190 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ \hline(660) \\ \hline \end{gathered}$	$\begin{aligned} & 19.0 \\ & (8.6) \end{aligned}$	$\begin{aligned} & \hline 21.0 \\ & \hline(9.5) \\ & \hline \end{aligned}$
8×5	8	18	$\begin{aligned} & 1.6 \\ & (41) \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & (20) \end{aligned}$	$\begin{aligned} & 0.5 \\ & (13) \end{aligned}$	11.0	2.0	$\begin{array}{\|c\|} \hline 46.30 \\ (299) \end{array}$	$\begin{aligned} & 190 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 20.0 \\ & (9.1) \end{aligned}$	22.0 (10.0)
8×6	8	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & \hline(20) \\ & \hline \end{aligned}$	$\begin{array}{r} 0.5 \\ (13) \\ \hline \end{array}$	11.0	2.0	$\begin{aligned} & 52.53 \\ & (339) \end{aligned}$	$\begin{array}{r} \hline 190 \\ (13) \\ \hline \end{array}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 21.0 \\ & \hline(9.5) \end{aligned}$	$\begin{array}{\|l} 23.0 \\ (10.4) \end{array}$
10×5	10	18	$\begin{aligned} & 1.6 \\ & (41) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	8.0	2.0	$\begin{aligned} & 59.14 \\ & (382) \end{aligned}$	$\begin{aligned} & 190 \\ & (13) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 25.0 \\ (11.3) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 31.0 \\ \text { (14.1) } \end{array}$
10×6	10	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & (13) \\ & \hline \end{aligned}$	8.0	2.0	$\begin{array}{\|l\|} \hline 66.15 \\ (427) \end{array}$	$\begin{aligned} & 190 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{array}{r} \hline 26.0 \\ (11.8) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 31.0 \\ 14.1 \end{array}$

Table 3: Sizes - Movements - Operating Conditions - Weights

Eccentric Joint Size	Neutral Length		RE-231 Movement Capability 1 From Neutral Position:					Operating ${ }^{2}$ Conditions			$\begin{aligned} & \text { Weights }{ }^{3} \\ & \text { llbs/(kgs) } \\ & \hline \end{aligned}$	
Nominal I.D. X I.D. (lnch)	Min. (Inch)	Max. (Inch)	Axial Compression Inch/(mm)	Axial Extension lnh/(mm)	\pm Lateral Deflection Inch/(mm)	\pm Angular ${ }^{4}$ Deflection Degrees	Torsional ${ }^{5}$ Rotation Degrees					-
10×8	10	18	1.6 (41)	$\begin{array}{r} 0.8 \\ (20) \\ \hline \end{array}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	8.0	2.0	$\begin{array}{\|l\|} \hline 81.35 \\ (525) \end{array}$	$\begin{aligned} & 190 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 30.0 \\ & (13.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 32.0 \\ (14.5) \end{array}$
12×6	12	18	$\begin{aligned} & 1.6 \\ & (41) \\ & \hline \end{aligned}$	$\begin{array}{r} 0.8 \\ \hline 0 \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & \hline 0.5 \\ & \hline \end{aligned}$	7.0	2.0	$\begin{array}{\|l\|} \hline 84.50 \\ (545) \\ \hline \end{array}$	$\begin{aligned} & 190 \\ & 190 \\ & (13) \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 35.0 \\ & \hline(15.9) \end{aligned}$	$\begin{array}{\|l\|} \hline 35.0 \\ (15.9) \end{array}$
12×8	10	18	$\begin{gathered} 1.6 \\ (41) \end{gathered}$	$\begin{aligned} & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	7.0	2.0	$\begin{array}{\|c\|} \hline 101.57 \\ (655) \end{array}$	$\begin{aligned} & \hline 190 \\ & (13) \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 39.0 \\ & (17.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 34.0 \\ (15.4) \end{array}$
12×10	10	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{gathered} 0.8 \\ \hline(20) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	7.0	2.0	$\begin{gathered} 120.22 \\ (776) \end{gathered}$	$\begin{array}{r} 190 \\ (13) \\ \hline \end{array}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 42.0 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 29.0 \\ & (13.2) \end{aligned}$
14×8	12	18	$\begin{aligned} & 1.6 \\ & \hline(41) \end{aligned}$	$\begin{array}{r} 0.8 \\ \hline(20) \\ \hline \end{array}$	$\begin{aligned} & \hline 0.5 \\ & (13) \\ & \hline \end{aligned}$	6.0	2.0	$\begin{array}{\|c\|} \hline 120.22 \\ (776) \end{array}$	$\begin{aligned} & 130 \\ & 190 \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 45.0 \\ & (20.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 34.0 \\ (15.4) \end{array}$
14×10	12	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{array}{r} 0.8 \\ \hline(20) \\ \hline \end{array}$	$\begin{gathered} \hline 0.5 \\ (13) \\ \hline \end{gathered}$	6.0	2.0	$\begin{gathered} 140.43 \\ (906) \\ \hline \end{gathered}$	$\begin{aligned} & 130 \\ & (9) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 48.0 \\ & (21.8) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 38.0 \\ (17.2) \end{array}$
14×12	10	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{array}{r} 0.8 \\ \hline(20) \\ \hline \end{array}$	$\begin{aligned} & \hline 0.5 \\ & (13) \\ & \hline \end{aligned}$	6.0	2.0	$\begin{array}{\|c} 162.21 \\ (1047) \\ \hline \end{array}$	$\begin{aligned} & \hline 130 \\ & 190 \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{array}{r} 55.0 \\ (24.9) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 31.0 \\ (14.1) \\ \hline \end{array}$
16×10	12	18	$\begin{aligned} & 1.6 \\ & (41) \end{aligned}$	$\begin{gathered} 0.8 \\ \hline(20) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	5.0	2.0	$\begin{aligned} & 162.21 \\ & (1047) \end{aligned}$	$\begin{aligned} & 115 \\ & (8) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 54.0 \\ (24.5) \end{gathered}$	$\begin{aligned} & \hline 45.0 \\ & (20.4) \end{aligned}$
16×12	12	18	$\begin{aligned} & 1.6 \\ & (41) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{aligned} & 0.5 \\ & (13) \\ & \hline \end{aligned}$	5.0	2.0	$\begin{array}{\|l\|} 185.57 \\ (1197) \end{array}$	$\begin{aligned} & 115 \\ & (8) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 60.0 \\ (27.2) \end{gathered}$	$\begin{gathered} 42.0 \\ (19.1) \\ \hline \end{gathered}$
16×14	10	18	1.6	$\begin{gathered} 0.8 \\ (20) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	5.0	2.0	$\begin{array}{\|l\|} \hline 210.49 \\ (1358) \end{array}$	$\begin{aligned} & 115 \\ & (8) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 62.0 \\ (28.1) \end{gathered}$	$\begin{aligned} & 43.0 \\ & (19.5) \end{aligned}$
18×12	12	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{array}{r} 0.8 \\ (20) \\ \hline \end{array}$	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	5.0	2.0	$\begin{array}{\|} 210.49 \\ (1358) \\ \hline \end{array}$	$\begin{aligned} & 115 \\ & (8) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 64.0 \\ & (29.0) \end{aligned}$	$\begin{aligned} & 48.0 \\ & (21.8) \end{aligned}$
18×14	12	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{array}{r} 0.8 \\ (20) \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & (13) \end{aligned}$	5.0	2.0	$\begin{array}{\|l\|} 236.98 \\ (1529) \end{array}$	$\begin{aligned} & 115 \\ & (8) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 66.0 \\ (29.9) \end{gathered}$	$\begin{aligned} & 43.0 \\ & (19.5) \end{aligned}$
18×16	10	18	$\begin{array}{r} 1.6 \\ (41) \\ \hline \end{array}$	$\begin{aligned} & 0.8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	5.0	2.0	$\begin{array}{c\|} \hline 265.05 \\ (1710) \\ \hline \end{array}$	$\begin{aligned} & 115 \\ & (8) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 70.0 \\ (31.8) \end{array}$	$\begin{array}{\|c} \hline 39.0 \\ (17.7) \\ \hline \end{array}$

NOTES:

1. Concurent Movements - Concurient movements ree developed when two or more movements in a pipe system occur ot the same time.

If multiple movements exceed single arch design there moy be a need for additional arches.
To perform calculation for concurrent movement when a pipe system design has more than one movement, please use the following formula:
$\frac{\text { Actual Axial Compression }}{\text { Roted Axial Compression }}+\frac{\text { Actuol Axial Extension }}{\text { Roted Axial Extension }}+$ Actuol Loteral $(X)+$ Rated Lateral $(X)+$ Roted Loteral (Y)
Calculation must be equal to or less than 1 for exponsion joint to operate within concurrent movement capability.
2. Pressure rating is based on 170° F operating temperature with a $4: 1$ s sfety foctor. At higher temperatures, the pressure rating is reduced slightly. Hydrostafic tessing ot 1.5 times rated maximum catologue pressure or design working pressure of pipe system for 10 minutes is ovailable upon request.

3. Weights are approximate and vary due to length.

4. The degree of angular movement is based on the maximum rated extension.
5. Torsional movement is expressed when the exponsion joint is ot neutral lengith.

"Effective Area" Thrust Factor= $\mathrm{T}=\frac{\pi}{4}(\mathrm{D})^{2},(\mathrm{l})$	$\mathrm{T}=$ Thrust P= PSI (Design, Test or Surge $\mathrm{D}=\mathrm{Arch}$ I.D.

6. Calculation of Thrust (Thrust Factor). When expansion joints are installed in the pipeline, the static portion of the thrusst is calculated as a product of the area of the I.D. of the arch of the expansion joint times the maximum pressure (design, test or surge) that will occur in the line. The result is a force expressed in pounds. Toke design, surge or test pressure X thrust factor to calculate end thrust. For filled arch configuration use the I.D. of the pipe (D)' to calculate end thrust.
7. Parts listed at 26 " $\mathrm{Hg} / 660 \mathrm{~mm}$ Hg vaccum. Vaccum rating is based on neutral installed length, without extermal load. Products should not be installed "extended" on vacuum applications.
8. Limit rod unit weight conssists of one rod with washers, nuts, and two limit rod plates. Multiply number of limit rods needed for the application (as specified in the Fluid Sealing Association's Technical Handbook, Seventh Edition or toble 4 in this manval) to determine correct weights.
9. For plastic pipe systems utilizing the series RC, consult Proco for design considerations.
10. Larger sizes not shown in brochure are available upon request.

Style RC \& RE 2P1 Performance Data

Table 4: Sizes - Movements - Operating Conditions - Weights

Joint Size	Neutral Length		RC \& RE 221 Movement Capability ${ }^{1}$ from Neutral Position					Operating ${ }^{2}$ Conditions			$\begin{aligned} & \text { Weights }{ }^{3} \\ & \text { lbs/(kgs) } \end{aligned}$	
$\begin{aligned} & \text { Nominal } \\ & \text { I.D. X I.D. } \\ & \text { (Inch) } \end{aligned}$	$\begin{gathered} \text { RC } \\ \text { (Inch) } \end{gathered}$	$\underset{\text { (lnch) }}{\text { RE }}$	Axial Compession Inch $/(\mathrm{mm})$	Axial Extension Inch/(mm)	\pm Lateral Deflection Inch/(mm)	\pm Angular ${ }^{4}$ Deflection Degrees	Torsional ${ }^{5}$ Rotation Degrees		ㄷㅡㅡㄹ			-
2 X 1	6	6	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	$\underset{(6.35)}{(25}$	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	18.4	2.0	$\begin{array}{\|l} \hline 12.69 \\ (81) \end{array}$	$\begin{aligned} & 200 \\ & \text { (14) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 5.0 \\ (1.3) \end{gathered}$	$\begin{aligned} & \hline 7.0 \\ & (3.2) \end{aligned}$
2×1.5	6	6	$\begin{gathered} 0.5 \\ \text { (13) } \end{gathered}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	15.9	2.0	$\begin{array}{\|c} 14.32 \\ \text { (92) } \end{array}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 6.0 \\ (2.7) \end{gathered}$	$\begin{gathered} 7.0 \\ (3.2) \end{gathered}$
2×1.5	X	7	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	14.1	2.0	$\begin{array}{\|l\|} \hline 16.04 \\ (103) \end{array}$	$\begin{aligned} & 200 \\ & \text { (14) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 6.0 \\ (2.7) \end{gathered}$	$\begin{gathered} 7.0 \\ (3.2) \\ \hline \end{gathered}$
2.5 X 1.5	6	6	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	$\underset{(6.35)}{(.25}$	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	14.1	2.0	$\begin{array}{\|l\|} \hline 16.04 \\ (103) \end{array}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\stackrel{26}{26}$	$\begin{gathered} 6.0 \\ (2.7) \end{gathered}$	$\begin{array}{\|l\|} \hline 8.0 \\ (3.6) \end{array}$
2.5×2	6	6	$\begin{gathered} 0.5 \\ \text { (13) } \end{gathered}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{gathered} 0.5 \\ \text { (13) } \end{gathered}$	12.5	2.0	$\begin{array}{\|l} 17.87 \\ (115) \end{array}$	$\begin{aligned} & 200 \\ & \text { (14) } \end{aligned}$	$\underset{(660)}{26}$	$\begin{aligned} & 6.0 \\ & (2.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.0 \\ (3.6) \end{array}$
2.5×2	X	7	$\begin{aligned} & 0.5 \\ & \text { (13) } \end{aligned}$	$\stackrel{.25}{(6.35)}$	$\begin{gathered} 0.5 \\ \text { (13) } \end{gathered}$	12.5	2.0	$\begin{array}{\|l} 17.87 \\ (115) \end{array}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\underset{(660)}{26}$	$\begin{gathered} 6.0 \\ (2.7) \end{gathered}$	$\begin{aligned} & 8.0 \\ & (3.6) \\ & \hline \end{aligned}$
3.0 X 1.5	6	6	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	12.5	2.0	$\begin{array}{\|l} \hline 17.87 \\ (115) \end{array}$	$\begin{aligned} & 200 \\ & \text { (14) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 8.0 \\ \text { (3.6) } \end{gathered}$	$\begin{array}{\|l\|} \hline 8.0 \\ (3.6) \end{array}$
3.0×2	6	6	$\begin{gathered} \hline 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{gathered} \hline 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	11.3	2.0	$\begin{array}{\|l} \hline 19.79 \\ (128) \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & \text { (14) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 9.0 \\ (4.1) \\ \hline \end{gathered}$	$\begin{gathered} 8.0 \\ \text { (3.6) } \end{gathered}$
3.0×2.5	6	6	$\begin{array}{r} 0.5 \\ \text { (13) } \\ \hline \end{array}$	$\begin{gathered} .25 \\ \text { (6.35) } \end{gathered}$	$\begin{array}{r} 0.5 \\ \text { (13) } \\ \hline \end{array}$	10.3	2.0	$\begin{array}{\|c} \hline 21.81 \\ (141) \end{array}$	$\begin{aligned} & 200 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.1) \\ \hline \end{gathered}$	$\begin{aligned} & 8.0 \\ & (3.6) \\ & \hline \end{aligned}$
4.0×2	6	6	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	$\begin{gathered} .25 \\ \text { (6.35) } \end{gathered}$	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	9.5	2.0	$\begin{array}{\|l} \hline 23.93 \\ (154) \end{array}$	$\begin{aligned} & 200 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (4.5) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 8.0 \\ (3.6) \end{array}$
4.0 X 2	7	7	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	$\underset{(6.35)}{.25}$	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	9.5	2.0	$\begin{array}{\|l} \hline 23.93 \\ (154) \end{array}$	$\begin{aligned} & 200 \\ & \text { (14) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (4.5) \end{aligned}$	$\begin{gathered} 8.0 \\ (3.6) \end{gathered}$
4×2.5	6	6	$\begin{gathered} \hline 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	$\begin{gathered} .25 \\ \text { (6.35) } \end{gathered}$	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	8.7	2.0	$\begin{array}{\|c\|} \hline \begin{array}{c} 26.14 \\ \text { (169) } \end{array} \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & \text { (14) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 11.0 \\ & (5.0) \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ \text { (3.6) } \end{gathered}$
4×2.5	7	7	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	$\underset{(6.35)}{.25}$	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	8.7	2.0	$\begin{array}{\|c} \hline 26.14 \\ (169) \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 11.0 \\ & (5.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.0 \\ (3.6) \end{array}$
4×3	6	6	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{gathered} 0.5 \\ \text { (13) } \end{gathered}$	8.1	2.0	$\begin{array}{\|c\|} \hline 28.46 \\ (189) \end{array}$	$\begin{aligned} & 200 \\ & (14) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 12.0 \\ & (5.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.0 \\ (3.6) \end{array}$
4×3	7	7	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	$\underset{(6.35)}{.25}$	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	8.1	2.0	$\begin{array}{\|c\|} \hline 28.46 \\ (189) \end{array}$	$\begin{aligned} & 200 \\ & \text { (14) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 12.0 \\ & (5.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.0 \\ (3.6) \end{array}$
5×3	6	X	$\begin{array}{r} 0.5 \\ (13) \\ \hline \end{array}$	$\begin{gathered} .25 \\ (6.35) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	7.1	2.0	$\begin{array}{\|c\|} \hline 33.38 \\ (215) \end{array}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{aligned} & 15.0 \\ & (6.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 12.0 \\ & (5.4) \end{aligned}$
5×4	6	6	$\begin{array}{r} 0.5 \\ \text { (13) } \\ \hline \end{array}$	$\begin{gathered} .25 \\ \text { (6.35) } \end{gathered}$	$\begin{gathered} \hline 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	6.3	2.0	$\begin{array}{\|c\|} \hline 38.70 \\ (250) \end{array}$	$\begin{aligned} & 190 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 16.0 \\ & (7.3) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 12.0 \\ (5.4) \\ \hline \end{array}$
6×2.5	6	X	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	$\stackrel{.25}{(6.35)}$	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	6.7	2.0	$\begin{array}{\|l\|} \hline 35.99 \\ (232) \end{array}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 15.0 \\ & (6.8) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (6.4) \end{aligned}$
6×3	6	6	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	$\underset{(6.35)}{(25}$	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	6.3	2.0	$\begin{array}{\|c\|} \hline 38.70 \\ (250) \end{array}$	190 (13)	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 17.0 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (6.4) \end{aligned}$

Table 4：Sizes－Movements－Operating Conditions－Weights

Joint Size	Neutral Length		RC \＆RE 221 Movement Capability 1 from Neutral Position					Operating ${ }^{2}$ Conditions			Weights ${ }^{3}$ lbs／（kgs）	
Nominal I．D．X I．D． （lnch）	$\begin{gathered} \text { RC } \\ \text { (Inch) } \end{gathered}$	$\begin{aligned} & \text { RE } \\ & \text { (Inch) } \end{aligned}$	Axial Compression Inch／（mm）	Axial Extension Inch／（mm）	\pm Lateral Deflection Inch／（mm）	\pm Angular ${ }^{4}$ Deflection Degrees	Torsional ${ }^{5}$ Rotation Degrees		（e		$\begin{aligned} & \text { 흘 } \\ & \text { 을 } \\ & \text { 흘 } \\ & \text { 音言 } \end{aligned}$	皆
6 X 4	6	6	$\begin{aligned} & 0.5 \\ & (13) \end{aligned}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	$\begin{aligned} & 0.5 \\ & (13) \end{aligned}$	5.7	2.0	$\begin{aligned} & 44.41 \\ & (287) \end{aligned}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 17.0 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 14.0 \\ & \text { (6.4) } \end{aligned}$
6×5	6	6	$\begin{aligned} & 0.5 \\ & (13) \end{aligned}$	$\begin{gathered} .25 \\ (6.35) \end{gathered}$	0.5 (13)	5.2	2.0	$\begin{gathered} 50.51 \\ (326) \end{gathered}$	$\begin{aligned} & 190 \\ & (13) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 18.0 \\ & 18.20 \end{aligned}$	$\begin{aligned} & 14.0 \\ & (6.4) \end{aligned}$
8×3	6	X	$\begin{gathered} 75 \\ \hline \end{gathered}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	0.5 （13）	7.8	2.0	56.64 （365）	190 (13)	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 19.0 \\ & (8.6) \\ & \hline \end{aligned}$	$\begin{gathered} 22.0 \\ (10.0) \end{gathered}$
8×4	6	6	$\begin{array}{r} 75 \\ \hline \end{array}$	$\begin{aligned} & \hline .375 \\ & (9.5) \end{aligned}$	0.5 (13)	7.1	2.0	63.51 （410）	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 19.0 \\ & (8.6) \end{aligned}$	$\begin{aligned} & 21.0 \\ & (9.5) \end{aligned}$
8×5	6	X	$\begin{array}{r} 75 \\ \hline \end{array}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	0.5 (13)	6.6	2.0	$\begin{gathered} 70.77 \\ (457) \end{gathered}$	$\begin{aligned} & 190 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 20.0 \\ & (9.1) \end{aligned}$	$\begin{gathered} 22.0 \\ (10.0) \end{gathered}$
8×6	6	6	$\begin{array}{r} 75 \\ \hline \end{array}$	$\begin{aligned} & \hline .375 \\ & (9.5) \end{aligned}$	0.5 （13）	6.1	2.0	$\begin{gathered} 78.42 \\ (506) \end{gathered}$	$\begin{aligned} & 190 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 21.0 \\ & (9.5) \end{aligned}$	$\begin{gathered} 23.0 \\ (10.4) \end{gathered}$
10×5	8	X	$\begin{aligned} & .75 \\ & \hline \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	0.5 （13）	5.7	2.0	$\begin{gathered} 86.46 \\ (558) \end{gathered}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 25.0 \\ & \text { (11.3) } \end{aligned}$	$\begin{aligned} & 31.0 \\ & (14.1) \end{aligned}$
10×6	8	8	$\begin{array}{r} .75 \\ \hline \end{array}$	$\begin{aligned} & .375 \\ & (9.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & (13) \end{aligned}$	5.4	2.0	$\begin{gathered} 94.90 \\ (612) \\ \hline \end{gathered}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{array}{r} 26.0 \\ (11.8) \end{array}$	$\begin{array}{\|c} \hline 31.0 \\ (14.1) \end{array}$
10×6	X	9	$\begin{gathered} .75 \\ (19) \end{gathered}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	0.5 (13)	5.4	2.0	$\begin{aligned} & 94.90 \\ & (612) \end{aligned}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 26.0 \\ (11.8) \end{gathered}$	$\begin{aligned} & 31.0 \\ & (14.1) \end{aligned}$
10×8	6	6	$\begin{aligned} & .75 \\ & \hline \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	0.5 （13）	4.8	2.0	$\begin{gathered} 112.95 \\ (729) \end{gathered}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 30.0 \\ (13.6) \end{gathered}$	$\begin{aligned} & 32.0 \\ & (14.5) \end{aligned}$
10×8	8	8	$\begin{array}{r} .75 \\ \hline \end{array}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & 0.5 \\ & (13) \end{aligned}$	4.8	2.0	$\begin{gathered} 112.95 \\ (729) \end{gathered}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 30.0 \\ (13.6) \end{gathered}$	$\begin{aligned} & 32.0 \\ & (14.5) \end{aligned}$
12×6	8	X	$\begin{array}{r} .75 \\ \hline \end{array}$	$\begin{aligned} & .375 \\ & (9.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & (13) \end{aligned}$	4.8	2.0	$\begin{gathered} 112.95 \\ (729) \end{gathered}$	$\begin{aligned} & 190 \\ & (13) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 35.0 \\ & (15.9) \end{aligned}$	$\begin{array}{\|c} 35.0 \\ (15.9) \end{array}$
12×8	6	8	$\begin{array}{r} .75 \\ \hline \end{array}$	$\begin{array}{r} .375 \\ (9.5) \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & \text { (13) } \end{aligned}$	4.3	2.0	$\begin{gathered} 132.57 \\ (855) \end{gathered}$	$\begin{aligned} & 190 \\ & (13) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 39.0 \\ (17.7) \end{gathered}$	$\begin{aligned} & 34.0 \\ & (15.4) \end{aligned}$
12×8	8	X	$\begin{array}{r} .75 \\ \hline \end{array}$	$\begin{array}{r} .375 \\ (9.5) \\ \hline \end{array}$	0.5 (13)	4.3	2.0	$\begin{gathered} 132.57 \\ (855) \end{gathered}$	$\begin{aligned} & 190 \\ & (13) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 39.0 \\ (17.7) \end{gathered}$	$\begin{aligned} & 34.0 \\ & (15.4) \end{aligned}$
12×10	8	8	$\begin{array}{r} .75 \\ \text { (19) } \end{array}$	$\begin{array}{r} .375 \\ (9.5) \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & (13) \end{aligned}$	3.9	2.0	$\begin{gathered} 153.77 \\ (992) \end{gathered}$	$\begin{aligned} & 190 \\ & \text { (13) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 42.0 \\ (19.1) \end{gathered}$	$\begin{gathered} 29.0 \\ (13.2) \end{gathered}$
14×8	8	X	$\begin{array}{r} .75 \\ \text { (19) } \end{array}$	$\begin{array}{r} .375 \\ (9.5) \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & \text { (13) } \end{aligned}$	3.9	2.0	$\begin{gathered} 177.09 \\ (1143) \end{gathered}$	$\begin{aligned} & 130 \\ & (9) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 45.0 \\ & (20.4) \end{aligned}$	$\begin{aligned} & 34.0 \\ & (15.4) \end{aligned}$
14×10	8	8	$\begin{array}{r} .75 \\ \hline \end{array}$	$\begin{array}{r} .375 \\ (9.5) \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & (13) \end{aligned}$	3.6	2.0	$\begin{gathered} 201.46 \\ (1300) \\ \hline \end{gathered}$	$\begin{aligned} & 130 \\ & \text { (9) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{array}{r} 48.0 \\ (21.8) \end{array}$	$\begin{array}{r} 38.0 \\ (17.2) \end{array}$
14×10	X	10	$\begin{array}{r} .75 \\ \hline \end{array}$	$\begin{array}{r} .375 \\ (9.5) \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & (13) \end{aligned}$	3.6	2.0	$\begin{gathered} 201.46 \\ (1300) \\ \hline \end{gathered}$	$\begin{aligned} & 130 \\ & \text { (9) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{array}{r} 48.0 \\ (21.8) \end{array}$	$\begin{array}{r} 38.0 \\ (17.2) \\ \hline \end{array}$
14×12	8	8	$\begin{array}{r} .75 \\ \text { (19) } \end{array}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & 0.5 \\ & (13) \end{aligned}$	3.3	2.0	$\begin{gathered} 227.40 \\ (1467) \end{gathered}$	$\begin{aligned} & 130 \\ & \text { (9) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 55.0 \\ (24.9) \end{gathered}$	$\begin{array}{\|c} 31.0 \\ (14.1) \end{array}$

See Notes Page 9

Gtyle RC \& RE 2el Performance Data

Joint Size	Neutral Length		RC \& RE 221 Movement Capability ${ }^{1}$ from Neutral Position					Operating Conditions			Weights lbs/(kgs)	
Nominal I.D. X I.D. (lnch)	$\begin{array}{\|c} \hline \text { RC } \\ \text { (Inch) } \end{array}$	$\begin{gathered} \text { RE } \\ \text { (lnch) } \end{gathered}$	Axial lnch/(mm)	Axiol Extension mhh/(mm)	\pm Laterol Deflection Inch/(mm)	\pm Angular ${ }^{4}$ Deflection Degrees	Torsional ${ }^{5}$ Rotation Degrieas					(ex
16×10	8	X	$\begin{aligned} & .75 \\ & \text { (19) } \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{array}{r} 0.5 \\ \text { (13) } \\ \hline \end{array}$	3.3	2.0	$\begin{gathered} 227.40 \\ (1467) \end{gathered}$	$\begin{aligned} & 110 \\ & (7.6) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 54.0 \\ (24.5) \end{gathered}$	$\begin{aligned} & 45.0 \\ & (20.4) \end{aligned}$
16×12	8	10	$\begin{array}{r} .75 \\ (19) \\ \hline \end{array}$	$\begin{aligned} & .375 \\ & \hline(9.5) \end{aligned}$	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	3.1	2.0	$\begin{gathered} 254.92 \\ (1645) \end{gathered}$	$\begin{aligned} & 110 \\ & (7.6) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 60.0 \\ (27.2) \end{gathered}$	$\begin{aligned} & 42.0 \\ & (19.1) \end{aligned}$
16×14	8	8	$\begin{aligned} & \hline .75 \\ & \text { (19) } \end{aligned}$	$\begin{aligned} & \hline .375 \\ & \text { (9.5) } \end{aligned}$	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	2.9	2.0	$\begin{aligned} & \hline 284.00 \\ & (1832) \end{aligned}$	$\begin{aligned} & 110 \\ & (7.6) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{array}{\|l\|} \hline 62.0 \\ (28.1) \end{array}$	$\begin{aligned} & \hline 43.0 \\ & (19.5) \end{aligned}$
18×12	8	X	$\begin{array}{r} \hline .75 \\ \text { (19) } \\ \hline \end{array}$	$\begin{aligned} & \hline .375 \\ & (9.5) \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ \text { (13) } \\ \hline \end{gathered}$	2.9	2.0	$\begin{gathered} 284.00 \\ (1832) \\ \hline \end{gathered}$	$\begin{aligned} & 110 \\ & (7.6) \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} \hline 64.0 \\ \text { (29.0) } \end{gathered}$	$\begin{aligned} & 48.0 \\ & (21.8) \\ & \hline \end{aligned}$
18×14	8	X	$\begin{array}{r} \hline .75 \\ \text { (19) } \\ \hline \end{array}$	$\begin{aligned} & .375 \\ & \text { (9.5) } \end{aligned}$	$\begin{gathered} 0.5 \\ (13) \\ \hline \end{gathered}$	2.7	2.0	$\begin{array}{\|c} 314.65 \\ (2030) \end{array}$	$\begin{gathered} 118 \\ (8.1) \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & \hline 66.0 \\ & (29.9) \end{aligned}$	$\begin{aligned} & \hline 43.0 \\ & (19.5) \end{aligned}$
18×16	8	8	$\begin{aligned} & \hline .75 \\ & \text { (19) } \end{aligned}$	$\begin{aligned} & .375 \\ & \hline(9.5) \end{aligned}$	$\begin{gathered} 0.5 \\ (13) \end{gathered}$	2.5	2.0	$\begin{gathered} 346.88 \\ (2238) \end{gathered}$	$\begin{aligned} & 110 \\ & (7.6) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 70.0 \\ & (31.8) \end{aligned}$	$\begin{aligned} & 39.0 \\ & 917.7) \end{aligned}$

NOTES:

1. Concurent Movements - Concurrent movements are developed when two or more movements in a pipe system occur ot the same time.

If muliple movements exceed single arch design there moy be a need for additional arches.
To perform calculation for concurrent movement when a pipe system design has more thon one movement, please use the following formula:
$\frac{\text { Actual Axial Compression }}{\text { Rated Axial Compression }}+\frac{\text { Actual Axial Extension }}{\text { Roted Axial Extension }}+\frac{\text { Actual Lateral }(X)}{\text { Roted Lateral }(X)}+\frac{\text { Actual Lateral }(Y)}{\text { Roted Loteral }(Y)}=1<1$
Calculation must be equal to or less than 1 for exponsion joint to operate within concurrent movement capability.
2. Pressure rating is based on 170° F operating temperature with a 4:1 sufety factor. At higher temperatures, the pressure rating is reduced slightily. Hydrostatic tessing ot 1.5 times rated maximum catologue pressure or design working pressure of pipe system for 10 minutes is available upon request.
3. Weights are approximate and vary due to length.
4. The degree of angular movement is based on the maximum rated extension.
5. Torsional movement is expressed when the expansion joint is ot neutral length.
6. Colculation of Thrust (Thrust Factor). When exponsion joints ore installed in the pipeline, the static portion of the thrust is calculated as a product of the area of the I.D. of the arch of the expansion joint times the maximum pressure (design, test or surge) that will occur in the line. The result is a force expressed in pounds.
["Effective Area" Thrust Factor=

$$
\begin{array}{ll}
T=\frac{\pi}{4}(D)^{2}, \text { (P) }
\end{array} \begin{aligned}
& \mathrm{T}=\text { Thrust } \\
& \text { P= PSS } \\
& \mathrm{D}=\text { Arch } \mathrm{D} \text { I. } \mathrm{D} \text {. } .
\end{aligned}, \text {, Test or Surge) }
$$ Toke design, surge or test pressure X thrus factor to calculate end thrust. For filled arch configuration use the I.D. of the pipe (D) ${ }^{2}$ to calculate end thrust.

7. Parts listed of $26^{\prime \prime} \mathrm{Hg} / 660 \mathrm{~mm}$ Hg vaccuum. Voccum rating is

 bassed on neutral instilled length, without external lood. Products should not be installed "extended" on vacuum opplications.8. Limit rod unit weight consists of one rod with washers, nuts, and two limit rod plates. Multiply number of limit rods needed for the application (as specified in the Fluid Sealing Association's Technical Handbook, Seventh Edifion or toble 4 in this manual) to determine correct weights.
9. For plastic pipe systems utilizing the series RC/RE, consult Proco for design considerations.
10. Larger sizes not shown in brochure are available upon request.

Stule RC \& RE

Proco Style RC

Proco Style RE

Gtyle RC \& RE Drilling Chart

Table 5: Flange Drillings									Thickness of Materials for PROCO Rubber Expansion Joints Material Thickness ${ }^{1}$ for Bolt Length Requirements							Control Unit Plate Detail	
Joint Size Available	Standard Drilling for PROCO Series RC or RE ${ }^{2}$ Rubber Expansion Joints 125/150\# Flange Dimensions																
	Large End				Small End						Large End Small End Rubber Flange Thickness Inch / (mm)			Large Small End End Max. Control 4 Rod Plate Thickness Inch / (mm)			
Nominal I.D. X I.D. (Inch)						$\left\|\begin{array}{c} \text { 은 틀 } \\ \text { 으ㅇㅡㅡㄹ } \end{array}\right\|$											
2 X 1	$\left.\begin{array}{c} 6.00 \\ (152.40) \end{array}\right)$	$\begin{gathered} 4.750 \\ (120.65) \end{gathered}$	4	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$	$\begin{gathered} 4.25 \\ (107.95) \end{gathered}$	$\begin{array}{\|l\|l\|} 3.125 \\ (79.38) \end{array}$	4	$\begin{aligned} & 0.625 \\ & (15.9) \end{aligned}$		$\begin{aligned} & 0.375 \\ & \text { (9.53) } \end{aligned}$	$\left\lvert\, \begin{gathered} 0.472 \\ \text { (11.99) } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.472 \\ (11.99) \end{gathered}\right.$	c	$\begin{array}{\|l\|l} 0.375 \\ (9.53) \end{array}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 10.125 \\ & (257.2) \end{aligned}$	$\begin{array}{\|l\|l} 0.625 \\ (15.9) \end{array}$
2×1.5	$\left.\begin{array}{c} 6.00 \\ (152.40) \end{array}\right)$	$\begin{gathered} 4.750 \\ (120.65) \end{gathered}$	4	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$	$\begin{gathered} 5.00 \\ (127.00) \end{gathered}$	$\begin{aligned} & 3.875 \\ & (98.43) \end{aligned}$	4	$\begin{aligned} & 0.625 \\ & (15.9) \end{aligned}$		$\begin{aligned} & 0.375 \\ & \text { (9.53) } \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.472 \\ & (11.99) \end{aligned}\right.$	$\left\lvert\, \begin{gathered} 0.472 \\ (11.99) \end{gathered}\right.$	S	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 10.125 \\ & (257.2) \end{aligned}$	$\begin{aligned} & 0.625 \\ & (15.9) \end{aligned}$
2.5×1.5	$\left.\begin{array}{c} 7.00 \\ (177.80) \end{array}\right)$	$\begin{gathered} 5.500 \\ (139.70) \end{gathered}$	4	$\begin{aligned} & 0.750 \\ & \text { (19.1) } \end{aligned}$	$\begin{gathered} 5.00 \\ (127.00) \end{gathered}$	$\begin{array}{\|l\|l} 3.875 \\ (98.43) \end{array}$	4	$\begin{aligned} & 0.625 \\ & (15.9) \end{aligned}$		$\begin{aligned} & 0.375 \\ & \text { (9.53) } \end{aligned}$	$\left\lvert\, \begin{gathered} 0.472 \\ \text { (11.99) } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.472 \\ \text { (11.99) } \end{gathered}\right.$	M	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 11.125 \\ & (282.6) \end{aligned}$	$\begin{array}{\|l\|l} 0.625 \\ (15.9) \end{array}$
2.5×2	$\begin{gathered} 7.00 \\ (177.80) \end{gathered}$	$\begin{array}{r} 5.500 \\ (139.70) \end{array}$	4	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$	$\begin{gathered} 6.00 \\ (152.40) \end{gathered}$	$\begin{gathered} 4.750 \\ (120.65) \end{gathered}$	4	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$	${ }_{r}^{2}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left.\left\lvert\, \begin{array}{c} 0.472 \\ (11.999 \end{array}\right.\right)$	$\left\lvert\, \begin{gathered} 0.472 \\ (11.99) \end{gathered}\right.$	R	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 11.125 \\ & (282.6) \end{aligned}$	$\begin{aligned} & 0.625 \\ & (15.9) \end{aligned}$
3.0×1.5	$\left.\begin{array}{c} 7.50 \\ (190.50) \end{array}\right)$	$\begin{gathered} 6.000 \\ (152.40) \end{gathered}$	4	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$	$\begin{gathered} 5.00 \\ (127.00) \end{gathered}$	$\begin{array}{\|l\|l} 3.875 \\ (98.43) \end{array}$	4	$\begin{aligned} & 0.625 \\ & (15.9) \end{aligned}$	E	$\begin{aligned} & 0.375 \\ & \text { (9.53) } \end{aligned}$	$\left\lvert\, \begin{gathered} 0.472 \\ \text { (11.99) } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.472 \\ \text { (11.99) } \end{gathered}\right.$	$\begin{aligned} & \mathrm{T} \\ & 0 \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 11.625 \\ & (295.3) \end{aligned}$	$\begin{array}{\|l\|l} 0.625 \\ (15.9) \end{array}$
3.0×2	$\left.\begin{array}{c} 7.50 \\ (190.50) \end{array}\right)$	$\begin{array}{\|c} 6.000 \\ (152.40) \end{array}$	4	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$	$\begin{gathered} 6.00 \\ (152.40) \end{gathered}$	$\left\|\begin{array}{c} 4.750 \\ (120.65) \end{array}\right\|$	4	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$	T	$\begin{aligned} & 0.375 \\ & \text { (9.53) } \end{aligned}$	$\left\lvert\, \begin{gathered} 0.472 \\ \text { (11.99) } \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & 0.472 \\ & \text { (11.99) } \end{aligned}\right.$	S	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\|\begin{array}{l} 11.625 \\ (295.3) \end{array}\right\|$	$\begin{array}{\|l\|l} 0.625 \\ \text { (15.9) } \end{array}$
3.0×2.5	$\left.\begin{array}{c} 7.50 \\ (190.50) \end{array}\right)$	$\begin{array}{\|c} 6.000 \\ (152.40) \end{array}$	4	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$	$\begin{gathered} 7.00 \\ (177.80) \end{gathered}$	$\begin{gathered} 5.500 \\ (139.70) \end{gathered}$	4	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$		$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\lvert\, \begin{gathered} 0.472 \\ \text { (11.99) } \end{gathered}\right.$	$\begin{array}{\|c\|} 0.472 \\ (11.99) \end{array}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 11.625 \\ & (295.3) \end{aligned}$	$\begin{array}{\|l} 0.625 \\ (15.9) \end{array}$
4.0×2	$\begin{gathered} 9.00 \\ (228.60) \end{gathered}$	$\begin{array}{\|l\|l\|} 7.500 \\ (190.50) \end{array}$	8	$\begin{aligned} & 0.750 \\ & \text { (19.1) } \end{aligned}$	$\begin{gathered} 6.00 \\ (152.40) \end{gathered}$	$\begin{gathered} 4.750 \\ (120.65) \end{gathered}$	4	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$	A	$\begin{aligned} & 0.375 \\ & \text { (9.53) } \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.472 \\ & \text { (11.99) } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0.472 \\ & (11.99) \end{aligned}\right.$	$\begin{aligned} & \text { F } \\ & Y \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\|\begin{array}{l} 13.125 \\ (333.4) \end{array}\right\|$	$\begin{aligned} & 0.625 \\ & (15.9) \end{aligned}$
4×2.5	$\begin{gathered} 9.00 \\ (228.60) \end{gathered}$	$\begin{array}{\|l\|l} 7.500 \\ (190.50) \end{array}$	8	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$	$\begin{array}{\|c} 7.00 \\ (177.80) \end{array}$	$\left.\begin{gathered} 5.500 \\ (139.70) \end{gathered} \right\rvert\,$	4	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & 0.375 \\ & \text { (9.53) } \end{aligned}$	$\left\lvert\, \begin{gathered} 0.472 \\ \text { (11.99) } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.472 \\ \text { (11.99) } \end{gathered}\right.$	F	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 13.125 \\ & (333.4) \end{aligned}$	$\begin{array}{\|l\|l} 0.625 \\ (15.9) \end{array}$
4×3	$\begin{gathered} 9.00 \\ (228.60) \end{gathered}$	$\begin{array}{\|c} 7.500 \\ (190.50) \end{array}$	8	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$	$\begin{array}{\|c} 7.50 \\ (190.50) \end{array}$	$\left.\begin{array}{c} 6.000 \\ (152.40) \end{array}\right)$	4	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$	2,	$\begin{aligned} & 0.375 \\ & \text { (9.53) } \end{aligned}$	$\left\lvert\, \begin{gathered} 0.472 \\ \text { (11.99) } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.472 \\ \text { (11.99) } \end{gathered}\right.$	$\begin{aligned} & A \\ & N \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\|\begin{array}{l} 13.125 \\ (333.4) \end{array}\right\|$	$\begin{array}{\|l\|l} 0.625 \\ (15.9) \end{array}$
5×3	$\left.\begin{array}{c} 10.00 \\ (254.00) \end{array}\right)$	$\begin{array}{\|c} 8.550 \\ (215.90) \end{array}$	8	$\begin{aligned} & 0.875 \\ & (22.2) \end{aligned}$	$\begin{array}{\|c} 7.50 \\ (190.50) \end{array}$	$\begin{array}{\|c} 6.000 \\ (152.40) \end{array}$	4	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$	3	$\begin{aligned} & 0.375 \\ & \text { (9.53) } \end{aligned}$	$\left\lvert\, \begin{gathered} 0.551 \\ (14.00) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.472 \\ (11.99) \end{gathered}\right.$	E	$\begin{gathered} 0.500 \\ (12.70) \end{gathered}$	$\left\lvert\, \begin{aligned} & 0.375 \\ & (9.53) \end{aligned}\right.$	$\begin{array}{\|l\|} 14.125 \\ (358.8) \end{array}$	$\begin{array}{\|l\|l} 0.625 \\ \text { (15.9) } \end{array}$
5×4	$\begin{gathered} 10.00 \\ (254.00) \end{gathered}$	$\begin{array}{\|c} 8.500 \\ (215.90) \end{array}$	8	$\begin{aligned} & 0.875 \\ & (22.2) \end{aligned}$	$\begin{gathered} 9.00 \\ (228.60) \end{gathered}$	$\begin{array}{\|c} 7.500 \\ (190.50) \end{array}$	8	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$	4	$\begin{aligned} & 0.375 \\ & \text { (9.53) } \end{aligned}$	$\left\lvert\, \begin{gathered} 0.551 \\ (14.00) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.472 \\ \text { (11.99) } \end{gathered}\right.$	H	$\begin{gathered} 0.500 \\ (12.70) \end{gathered}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left.\begin{aligned} & 14.125 \\ & (358.8) \end{aligned} \right\rvert\,$	$\begin{array}{\|l\|l} 0.625 \\ (15.9) \end{array}$
6×2.5	$\begin{gathered} 11.00 \\ (279.40) \end{gathered}$	$\begin{gathered} 9.500 \\ (241.30) \end{gathered}$	8	$\begin{aligned} & 0.875 \\ & (22.2) \end{aligned}$	$\begin{array}{\|c} 7.00 \\ (177.80) \end{array}$	$\left.\begin{gathered} 5.500 \\ (139.70) \end{gathered} \right\rvert\,$	4	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$		$\begin{aligned} & 0.375 \\ & \text { (9.53) } \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.551 \\ & (14.00) \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0.472 \\ & (11.99) \end{aligned}\right.$	$\begin{aligned} & \text { C } \\ & \text { K } \end{aligned}$	$\begin{gathered} 0.500 \\ (12.70) \end{gathered}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\begin{aligned} & 15.125 \\ & (384.2) \end{aligned}$	$\begin{array}{\|l\|l} 0.625 \\ (15.9) \end{array}$
6×3	$\begin{gathered} 11.00 \\ (279.40) \end{gathered}$	$\begin{array}{\|c} 9.500 \\ (241.30) \end{array}$	8	$\begin{aligned} & 0.875 \\ & (22.2) \end{aligned}$	$\begin{array}{\|c} 7.50 \\ (190.50) \end{array}$	$\left.\begin{gathered} 6.000 \\ (152.40) \end{gathered} \right\rvert\,$	4	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$		$\begin{aligned} & 0.375 \\ & \text { (9.53) } \end{aligned}$	$\left\lvert\, \begin{gathered} 0.551 \\ (14.00) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.472 \\ (11.99) \end{gathered}\right.$	E	$\left\|\begin{array}{c} 0.500 \\ (12.70) \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0.375 \\ & (9.53) \end{aligned}\right.$	$\begin{aligned} & 15.125 \\ & (384.2) \end{aligned}$	$\begin{array}{\|l\|l} 0.625 \\ \text { (15.9) } \end{array}$
6×4	$\begin{gathered} 11.00 \\ (279.40) \end{gathered}$	$\begin{gathered} 9.500 \\ (241.30) \end{gathered}$	8	$\begin{aligned} & 0.875 \\ & (22.2) \end{aligned}$	$\begin{gathered} 9.00 \\ (228.60) \end{gathered}$	$\begin{array}{\|c} 7.500 \\ (190.50) \end{array}$	8	$\begin{aligned} & 0.750 \\ & (19.1) \end{aligned}$		$\begin{aligned} & 0.375 \\ & \text { (9.53) } \end{aligned}$	$\left\lvert\, \begin{gathered} 0.551 \\ (14.00) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.472 \\ \text { (11.99) } \end{gathered}\right.$	5	$\begin{aligned} & 0.500 \\ & (12.70) \end{aligned}$	$\left\lvert\, \begin{gathered} 0.472 \\ \text { (11.99) } \end{gathered}\right.$	$\begin{aligned} & 15.125 \\ & (384.2) \end{aligned}$	$\begin{array}{\|l\|l} 0.625 \\ \text { (15.9) } \end{array}$

Table 5: Flange Drillings									Thickness of Materials for PROCO Rubber Expansion Joints Material Thickness ${ }^{1}$ for Bolt Length Requirements							Control Unit Plate Detail	
Joint Size Available	Standard Drilling for PROCO Series RC or RE ${ }^{2}$ Rubber Expansion Joints 125/150\# Flange Dimensions																
	Large End				Small End						Large End Small End Rubher Flange Thickness Inch / (mm)			Large End Small End Max. Control 4 Rod Plate Thickness Inch / (mm)			
Nominal I.D. X I.D. (Inch)							$\left\|\begin{array}{l} \frac{\pi}{0} \\ \dot{0} \\ \dot{0} \\ \dot{0} \\ \dot{0} \end{array}\right\|$										
6×5	$\left\|\begin{array}{c} 11.00 \\ (279.40) \end{array}\right\|$	$\binom{9.500}{(241.30)}$	8	$\begin{aligned} & 0.875 \\ & (22.2) \end{aligned}$	$\left\|\begin{array}{c} 10.00 \\ (254.00) \end{array}\right\|$	$\left\|\begin{array}{c} 8.550 \\ (215.90) \end{array}\right\|$	8	$\begin{array}{\|l\|l} 0.875 \\ (22.2) \end{array}$		$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.551 \\ & (14.00) \end{aligned}\right.$	$\left\lvert\, \begin{gathered} 0.472 \\ (11.99) \end{gathered}\right.$		$\left\|\begin{array}{c} 0.500 \\ (12.70) \end{array}\right\|$	$\left\|\begin{array}{c} 0.551 \\ (14.00) \end{array}\right\|$	$\begin{aligned} & 15.125 \\ & (384.2) \end{aligned}$	$\begin{aligned} & 0.625 \\ & (15.9) \end{aligned}$
8×3	$\begin{array}{\|c} 13.50 \\ (342.90) \end{array}$	$\begin{array}{\|c} 11.75 \\ (298.45) \end{array}$	8	$\begin{array}{\|l} 0.875 \\ (22.2) \end{array}$	$\begin{gathered} 7.50 \\ (190.50) \end{gathered}$	$\begin{array}{\|c} 6.000 \\ (152.40) \end{array}$	4	$\begin{array}{\|l\|l} 0.750 \\ (19.11) \end{array}$		$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\lvert\, \begin{gathered} 0.630 \\ (16.00) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.472 \\ (11.99) \end{gathered}\right.$	T	$\left\|\begin{array}{c} 0.750 \\ (19.05) \end{array}\right\|$	$\left\|\begin{array}{c} 0.472 \\ (11.99) \end{array}\right\|$	$\begin{aligned} & 19.125 \\ & (485.8) \end{aligned}$	$\begin{aligned} & 1.000 \\ & (25.4) \end{aligned}$
8×4	$\left\|\begin{array}{c} 13.50 \\ (342.90) \end{array}\right\|$	$\binom{11.75}{(298.45)}$	8	$\begin{aligned} & 0.875 \\ & (22.2) \end{aligned}$	$\left.\left\lvert\, \begin{array}{c} 9.00 \\ (228.60) \end{array}\right.\right)$	$\left.\left\lvert\, \begin{array}{c} 7.500 \\ (190.50) \end{array}\right.\right)$	8	$\begin{array}{\|l} 0.750 \\ 19.11 \end{array}$	R	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\lvert\, \begin{gathered} 0.630 \\ (16.00) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.472 \\ (11.99) \end{gathered}\right.$	$\begin{gathered} M \\ E \end{gathered}$	$\left\|\begin{array}{c} 0.750 \\ (19.05) \end{array}\right\|$	$\left\|\begin{array}{c} 0.472 \\ (11.99) \end{array}\right\|$	$\left.\begin{aligned} & 19.125 \\ & (485.8) \end{aligned} \right\rvert\,$	$\begin{aligned} & 1.000 \\ & \text { (25.4) } \end{aligned}$
8×5	$\begin{array}{\|c} 13.50 \\ (342.90) \end{array}$	$\left.\left\lvert\, \begin{array}{c} 11.75 \\ (298.45) \end{array}\right.\right)$	8	$\begin{aligned} & 0.875 \\ & (22.2) \end{aligned}$	$\begin{array}{\|c} 10.00 \\ (254.00) \end{array}$	$\left.\begin{array}{\|c\|} 8.550 \\ (215.90) \end{array} \right\rvert\,$	8	$\begin{array}{\|l\|l} 0.875 \\ (22.2) \end{array}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\lvert\, \begin{gathered} 0.630 \\ (16.00) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.551 \\ (14.00) \end{gathered}\right.$	I	$\left\|\begin{array}{c} 0.750 \\ (19.05) \end{array}\right\|$	$\left\|\begin{array}{c} 0.551 \\ (14.00) \end{array}\right\|$	$\left.\begin{array}{\|l\|} 19.125 \\ (485.8) \end{array} \right\rvert\,$	$\begin{aligned} & 1.000 \\ & \text { (25.4) } \end{aligned}$
8×6	$\left\|\begin{array}{c} 13.50 \\ (342.90) \end{array}\right\|$	$\left.\left\lvert\, \begin{array}{c} 11.75 \\ (298.45) \end{array}\right.\right)$	8	$\begin{aligned} & 0.875 \\ & (22.2) \end{aligned}$	$\left\|\begin{array}{c} 11.00 \\ (279.40) \end{array}\right\|$	$\begin{array}{\|c} 9.500 \\ (241.30) \end{array}$	8	$\begin{array}{\|l\|l} \hline 0.875 \\ (22.2) \end{array}$	R	$\begin{aligned} & 0.375 \\ & \text { (9.53) } \end{aligned}$	$\left\lvert\, \begin{gathered} 0.630 \\ (16.00) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.551 \\ (14.00) \end{gathered}\right.$	0	$\left\|\begin{array}{c} 0.750 \\ (19.05) \end{array}\right\|$	$\left\|\begin{array}{c} 0.551 \\ (14.00) \end{array}\right\|$	$\begin{aligned} & 19.125 \\ & (485.8) \end{aligned}$	$\begin{aligned} & 1.000 \\ & (25.4) \end{aligned}$
10×5	$\begin{array}{\|c} \begin{array}{c} 16.00 \\ (406.40) \end{array} \end{array}$	$\left.\left\lvert\, \begin{array}{c} 14.25 \\ (361.95) \end{array}\right.\right)$	12	$\begin{aligned} & 1.000 \\ & (25.4) \end{aligned}$	$\begin{array}{\|c} 10.00 \\ (254.00) \end{array}$	$\left.\begin{array}{\|c} 8.550 \\ (215.90) \end{array} \right\rvert\,$	8	$\left.\begin{aligned} & 0.875 \\ & (22.2) \end{aligned} \right\rvert\,$	0	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\lvert\, \begin{gathered} 0.630 \\ (16.00) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.551 \\ (14.00) \end{gathered}\right.$	$\begin{aligned} & P \\ & E \end{aligned}$	$\left\|\begin{array}{c} 0.750 \\ (19.05) \end{array}\right\|$	$\left\|\begin{array}{c} 0.551 \\ (14.00) \end{array}\right\|$	$\begin{array}{\|l\|} 21.125 \\ (549.3) \end{array}$	$\begin{aligned} & 1.000 \\ & \text { (25.4) } \end{aligned}$
10×6	$\begin{gathered} 16.00 \\ (406.40) \end{gathered}$	$\left.\left\lvert\, \begin{array}{c} 14.25 \\ (361.95) \end{array}\right.\right)$	12	$\begin{aligned} & 1.000 \\ & (55.4) \end{aligned}$	$\begin{array}{\|c} 11.00 \\ (279.40) \end{array}$	$\begin{array}{\|c} 9.500 \\ (241.30) \end{array}$	8	$\begin{array}{\|l\|l} 0.875 \\ (22.2) \end{array}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\lvert\, \begin{gathered} 0.630 \\ (16.00) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.551 \\ (14.00) \end{gathered}\right.$	F	$\left\|\begin{array}{c} 0.750 \\ (19.05) \end{array}\right\|$	$\left\|\begin{array}{c} 0.551 \\ (14.00) \end{array}\right\|$	$\left\|\begin{array}{l} 21.125 \\ (549.3) \end{array}\right\|$	$\begin{aligned} & 1.000 \\ & (25.4) \end{aligned}$
10×8	$\begin{gathered} \left.\begin{array}{c} 16.00 \\ (406.40) \end{array}\right) \end{gathered}$	$\left.\left\lvert\, \begin{array}{c} 14.25 \\ (361.95) \end{array}\right.\right)$	12	$\begin{aligned} & 1.000 \\ & (25.4) \end{aligned}$	$\begin{array}{\|c} 13.50 \\ (342.90) \end{array}$	$\left\|\begin{array}{l} 11.750 \\ (298.45) \end{array}\right\|$	8	$\begin{array}{\|l\|l} 0.875 \\ (22.2) \end{array}$	$\begin{aligned} & \text { L } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\lvert\, \begin{gathered} 0.630 \\ (16.00) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.630 \\ (16.00) \end{gathered}\right.$	Y	$\left\|\begin{array}{c} 0.750 \\ (19.05) \end{array}\right\|$	$\left\|\begin{array}{c} 0.630 \\ (16.00) \end{array}\right\|$	$\left\|\begin{array}{l} 21.125 \\ (549.3) \end{array}\right\|$	$\begin{aligned} & 1.000 \\ & \text { (25.4) } \end{aligned}$
12×6	$\begin{array}{\|c} 19.00 \\ (482.60) \end{array}$	$\binom{17.00}{(431.80)}$	12	$\begin{aligned} & 1.000 \\ & (25.4) \end{aligned}$	$\left\|\begin{array}{c} 11.00 \\ (279.40) \end{array}\right\|$	$\left\|\begin{array}{c} 9.500 \\ (241.30) \end{array}\right\|$	8	$\begin{array}{\|l\|l} 0.875 \\ (22.2) \end{array}$	S	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\lvert\, \begin{gathered} 0.748 \\ (19.00) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.630 \\ (16.00) \end{gathered}\right.$	L	$\left\|\begin{array}{c} 0.750 \\ (19.05) \end{array}\right\|$	$\left\|\begin{array}{c} 0.551 \\ (14.00) \end{array}\right\|$	$\begin{array}{\|l\|} 24.625 \\ (625.5) \end{array}$	$\begin{aligned} & 1.000 \\ & \text { (25.4) } \end{aligned}$
12×8	$\begin{aligned} & 19.00 \\ & (482.60) \end{aligned}$	$\left\lvert\, \begin{gathered} 17.00 \\ (431.80) \end{gathered}\right.$	12	$\begin{aligned} & 1.000 \\ & (25.4) \end{aligned}$	$\begin{array}{\|c} 13.50 \\ (342.90) \end{array}$	$\left\|\begin{array}{l} 11.750 \\ (298.45) \end{array}\right\|$	8	$\begin{array}{\|l\|l} \hline 0.875 \\ (22.2) \end{array}$	3	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\lvert\, \begin{gathered} 0.748 \\ 19001 \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.630 \\ (16.00) \end{gathered}\right.$	G	$\left\|\begin{array}{c} 0.750 \\ (19.05) \end{array}\right\|$	$\left\|\begin{array}{c} 0.631 \\ (16.00) \end{array}\right\|$	$\left.\begin{array}{\|l\|} 24.625 \\ (625.5) \end{array} \right\rvert\,$	$\begin{aligned} & 1.000 \\ & \text { (25.4) } \end{aligned}$
12×10	$\begin{array}{\|c} 19.00 \\ (482.60) \end{array}$	$\left\lvert\, \begin{gathered} 17.00 \\ (431.80) \end{gathered}\right.$	12	$\begin{aligned} & 1.000 \\ & (25.4) \end{aligned}$	$\left(\begin{array}{c} 16.00 \\ (406.40) \end{array}\right.$	$\left\|\begin{array}{l} 14.250 \\ (361.95) \end{array}\right\|$	12	$\begin{aligned} & 1.000 \\ & (25.4) \end{aligned}$	\&	$\begin{aligned} & 0.375 \\ & \text { (9.53) } \end{aligned}$	$\left\lvert\, \begin{gathered} 0.748 \\ (19.00) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.630 \\ (16.00) \end{gathered}\right.$	T	$\left\|\begin{array}{c} 0.750 \\ (19.05) \end{array}\right\|$	$\begin{array}{\|c} 0.631 \\ (16.00) \end{array}$	$\begin{aligned} & 24.625 \\ & (625.5) \end{aligned}$	$\begin{aligned} & 1.000 \\ & \text { (25.4) } \end{aligned}$
14×8	$\left\|\begin{array}{r} 21.00 \\ (533.40) \end{array}\right\|$	$\left.\left\lvert\, \begin{array}{c} 18.75 \\ (476.25) \end{array}\right.\right)$	12	$\begin{aligned} & 1.125 \\ & (28.6) \end{aligned}$	$\begin{array}{\|c} 13.50 \\ (342.90) \end{array}$	$\begin{array}{\|l\|l} 11.750 \\ \text { (298.45) } \end{array}$	8	$\begin{array}{\|l\|l} 0.875 \\ (22.2) \end{array}$	4	$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\lvert\, \begin{gathered} 0.866 \\ (22.00) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.630 \\ (16.00) \end{gathered}\right.$	$\begin{aligned} & \text { I } \\ & \text { C } \end{aligned}$	$\left\|\begin{array}{c} 0.750 \\ (19.05) \end{array}\right\|$	$\left\|\begin{array}{c} 0.631 \\ (16.00) \end{array}\right\|$	$\begin{array}{\|l\|} 26.625 \\ (676.3) \end{array}$	$\begin{aligned} & 1.000 \\ & (25.4) \end{aligned}$
14×10	$\left\|\begin{array}{c} 21.00 \\ (533.40) \end{array}\right\|$	$\left.\left\lvert\, \begin{array}{c} 18.75 \\ (476.25) \end{array}\right.\right)$	12	$\begin{aligned} & 1.125 \\ & (28.6) \end{aligned}$	$\begin{gathered} 16.00 \\ (406.40) \end{gathered}$	$\left\|\begin{array}{l} 14.250 \\ (361.95) \end{array}\right\|$	12	$\begin{array}{\|l\|} \hline 1.000 \\ 1054) \\ \hline \end{array}$		$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\lvert\, \begin{gathered} 0.866 \\ (22.00) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.630 \\ (16.00) \end{gathered}\right.$	N	$\left\|\begin{array}{c} 0.750 \\ (19.05) \end{array}\right\|$	$\left\|\begin{array}{c} 0.631 \\ (16.00) \end{array}\right\|$	$\begin{array}{\|l\|} 26.625 \\ (676.3) \end{array}$	$\begin{aligned} & 1.000 \\ & \text { (25.4) } \end{aligned}$
14×12	$\begin{array}{\|c} 21.00 \\ (533.40) \\ \hline \end{array}$	$\left.\left\lvert\, \begin{array}{c} 18.75 \\ (476.25) \end{array}\right.\right)$	12	$\begin{aligned} & 1.125 \\ & (28.6) \end{aligned}$	$\begin{gathered} 19.00 \\ (482.60) \end{gathered}$	$\begin{aligned} & 17.000 \\ & (431.80) \end{aligned}$	12	$\begin{array}{\|l\|} \hline 1.000 \\ (25.4) \\ \hline \end{array}$		$\begin{aligned} & 0.375 \\ & (9.53) \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.866 \\ & (22.00) \end{aligned}\right.$	$\left\lvert\, \begin{gathered} 0.748 \\ (19.00) \end{gathered}\right.$	S	$\begin{array}{\|l\|} \hline 0.750 \\ (19.05) \end{array}$	$\left\|\begin{array}{c} 0.750 \\ (19.05) \end{array}\right\|$	$\begin{aligned} & 26.625 \\ & (676.3) \end{aligned}$	$\begin{aligned} & 1.000 \\ & (25.4) \end{aligned}$

Style RC \& RE Drilling Chart

Table 5: Flange Drillings									Thickness of Materials for PROCO Rubber Expansion Joints Material Thickness ${ }^{1}$ for Bolt Length Requirements							Control Unit Plate Detail	
	Standard Drilling for PROCO Series RC or RE ${ }^{2}$ Rubber Expansion Joints 125/150\# Flange Dimensions																
	Large End				Small End						Large End Small End Rubber Flange Thidkness Inch / (mm)			Large End Small End Max. Control 4 Rod Plofe Thickness Inch / (mm)			
$\begin{array}{\|l} \text { Nominal } \\ \text { I.D. X I.D. } \end{array}$ (lnch)		은 흥	-														
16×10	$\begin{array}{\|l\|} \hline 23.50 \\ (596.90) \end{array}$	$\begin{array}{\|l\|} \hline 21.25 \\ (539.75) \\ \hline \end{array}$	16	$\begin{aligned} & 1.125 \\ & (28.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.00 \\ (406.40) \end{array}$	$\begin{array}{\|l\|} \hline 14.250 \\ (361.95) \end{array}$	12	$\begin{array}{\|l\|} \hline 1.000 \\ (25.4) \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 0.375 \\ (9.53) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0.866 \\ (22.00) \end{array}$	$\begin{array}{\|l} 0.630 \\ (16.00) \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 0.750 \\ (19.05) \end{array}$	$\begin{array}{\|l\|} \hline 0.750 \\ (19.05) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 30.125 \\ (765.2) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.250 \\ (31.8) \\ \hline \end{array}$
16×12	$\begin{array}{\|l\|} \hline 23.50 \\ (596.90) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 21.25 \\ (539.75) \\ \hline \end{array}$	16	$\begin{aligned} & 1.125 \\ & (28.6) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 19.00 \\ (482.60) \end{array}$	$\begin{array}{\|l\|l\|} \hline 17.000 \\ (431.80) \end{array}$	12	$\begin{array}{\|l\|} \hline 1.000 \\ (25.4) \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 0.375 \\ (9.53) \end{array}$	$\begin{array}{\|l\|} \hline 0.866 \\ (22.00) \end{array}$	$\begin{array}{\|l\|} \hline 0.630 \\ (16.00) \end{array}$		$\begin{array}{\|c\|} \hline 0.750 \\ (19.05) \end{array}$	$\begin{array}{\|l\|} \hline 0.750 \\ (19.05) \end{array}$	$\begin{array}{\|l\|l\|} \hline 30.125 \\ (765.2) \end{array}$	$\begin{array}{\|l\|} \hline 1.250 \\ (31.8) \\ \hline \end{array}$
16×14	$\begin{array}{\|l\|} \hline 23.50 \\ (596.90) \end{array}$	$\begin{array}{\|l\|} \hline 21.25 \\ (539.75) \\ \hline \end{array}$	16	$\begin{aligned} & 1.125 \\ & (28.6) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 21.00 \\ (533.40) \end{array}$	$\begin{array}{\|l\|} \hline 18.750 \\ \text { (476.25) } \\ \hline \end{array}$	12	$\begin{aligned} & \hline 1.125 \\ & (28.6) \end{aligned}$		$\begin{array}{\|l\|} \hline 0.375 \\ (9.53) \end{array}$	$\begin{array}{\|l\|} \hline 0.866 \\ (22.00) \end{array}$	$\begin{array}{\|l\|} \hline 0.866 \\ (22.00) \end{array}$		$\begin{array}{\|l\|} \hline 0.750 \\ (19.05) \end{array}$	$\begin{array}{\|l\|} \hline 0.750 \\ (19.05) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 30.125 \\ (765.2) \end{array}$	$\begin{array}{\|l\|l} \hline 1.250 \\ (31.8) \\ \hline \end{array}$
18×12	$\begin{array}{\|c} \hline 25.00 \\ (635.00) \end{array}$	$\begin{aligned} & \hline 22.75 \\ & (577.85) \end{aligned}$	16	$\begin{aligned} & 1.250 \\ & (31.8) \end{aligned}$	$\begin{array}{\|c\|} \hline 19.00 \\ (482.60) \end{array}$	$\begin{array}{\|l\|} \hline 17.000 \\ (431.80) \end{array}$	12	$\begin{array}{\|l\|} \hline 1.000 \\ \text { (25.4) } \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 0.375 \\ 19.53) \end{array}$	$\begin{aligned} & 0.866 \\ & (22.00) \end{aligned}$	$\begin{aligned} & 0.630 \\ & (16.00) \end{aligned}$		$\begin{array}{\|l\|} \hline 0.750 \\ 19.05) \end{array}$	$\begin{array}{\|l\|} \hline 0.750 \\ (19.05) \end{array}$	$\begin{array}{\|l\|} \hline 31.625 \\ (803.3) \end{array}$	$\begin{array}{\|l\|} \hline 1.250 \\ (31.8) \\ \hline \end{array}$
18×14	$\begin{array}{\|c\|} \hline 25.00 \\ (635.00) \end{array}$	$\begin{aligned} & \hline 22.75 \\ & (577.85) \end{aligned}$	16	$\begin{aligned} & 1.250 \\ & (31.8) \end{aligned}$	$\begin{array}{\|c\|} \hline 21.00 \\ (533.40) \end{array}$	$\begin{array}{\|l\|} \hline 18.750 \\ (476.25) \end{array}$	12	$\begin{array}{\|l\|} \hline 1.125 \\ (28.6) \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 0.375 \\ 19.53) \end{array}$	$\begin{array}{\|l\|} \hline 0.866 \\ (22.00) \end{array}$	$\begin{array}{\|l\|} \hline 0.866 \\ (22.00) \end{array}$		$\begin{array}{\|l\|} \hline 0.750 \\ (19.05) \end{array}$	$\begin{array}{\|l\|} \hline 0.750 \\ (19.05) \end{array}$	$\begin{aligned} & \hline 31.625 \\ & (803.3) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.250 \\ (31.8) \end{array}$
18×16	$\begin{array}{\|c\|} \hline 25.00 \\ (635.00) \end{array}$	$\begin{array}{\|c} \hline 22.75 \\ (577.85) \end{array}$	16	$\begin{aligned} & 1.250 \\ & (31.8) \end{aligned}$	$\begin{array}{\|c\|} \hline 23.50 \\ (596.90) \end{array}$	$\begin{array}{\|l\|} \hline 21.250 \\ (539.75) \end{array}$	16	$\begin{array}{\|l\|} \hline 1.125 \\ (28.6) \end{array}$		$\begin{array}{\|l\|} \hline 0.375 \\ (9.53) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} 0.866 \\ (22.00) \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.866 \\ (22.00) \end{array}$		$\begin{array}{\|c\|} \hline 0.750 \\ (19.05) \end{array}$	$\begin{array}{\|l\|} \hline 0.750 \\ (19.05) \end{array}$	$\begin{array}{\|l\|l\|} \hline 31.625 \\ (803.3) \end{array}$	$\begin{array}{\|l\|} \hline 1.250 \\ (31.8) \end{array}$

Merric Conversion Formula: Nominal I.D.: in. x $25=$ mm; Dimensions/Thickness': in. $\times 25.4=\mathrm{mm}$.

Notes:

1. Limit/Control Rod length is determined by neutral length of rubber expansion joint, rated extension, control rod plate thickness, mating flange thickness and number of nuts. Consult PROCO for rod lengths.
2. Flange Dimensions shown are in accordance wihh ANSI B76. 1 and ANSI B16.5 Class 125/150, AWWA C-207-07, Tbl 2 and 3 - Class D, Table 4 - Class E. Hole size shown is 1/8" larger than AWWA Standard.
3. Adjacent mating flange thickness is required to determine overall rod length and compression sleeve length (if required).
4. Plate thickness is bosed on a maximum width PROCO would use to design a Limit/Control Rod plate.
5. Flat Washers sequired ot ring splits and are supplied by others.
6. Control rod plate O.D. installed dimension is bosed on a maximum O.D. Proco would supply.
7. Control rod diameter i s based on a maximum diameter Proco would use to design a control rod.

A - Retaining Ring Thickness
B - Rubber Flange Thickness
C - Adjacent Mating Flange Thickness (By Others)
D - Control Unit Plote Thickness
E - Double Nut Thickness is determined by Control Rod Diameter
F - Control Rod Bolt Length is determined by A through E + OAL 1
G - Control Rod Control Rod Plate O.D.
H - Maximum Rod Diameter

Limit Rads

Definition

A control unit assembly is a system of two or more control rod units (limit rods) placed across an expansion joint from flange to flange to minimize possible damage caused by excessive motion of a pipeline. The control unit assemblies can be set ot the maximum allowable expansion and/or contraction of the rubber expansion joint. When used in this manner, control units are an addifional safety factor and can minimize possible damage to adjacent equipment.

Rubber expansion joints should be installed between two fixed anchor points in a piping system. The pipe system must be rigidly anchored on both sides of the expansion joint to control expansion or contraction of the line. Piping anchors must be capoble of withstanding the line thrusts generated by internal pressure or wide temperature fluctuations.

When proper anchoring cannot be provided, CONTROL UNITS ARE

REQUIRED. For un-anchored piping systems nuts shall be tightened snug against rod plate to prevent over extension due to pressure thrust created by an expansion joint. Refer to "Thrust Factor in Table 2, 3, and 4 note 5 in this manual.

Known as a LIMIT ROD, this control unit configuration will allow an expansion joint to extend to a predetermined extension setting. Nuts shall be field set to no more than the maximum allowable extension movement of a rubber expansion joint (unless used in an un-anchored system). Refer to Table 2 in this manual for allowable movement capobilifies. Spherical washers can also be furnished (upon request) to combat any "nut to plate" binding during offset. Consult

the systems engineer for proper nut settings prior to system operation.

The number of rods, control rod diameters and control rod plate thicknesses are important considerations when specifying control units for an application. As a minimum, specifining engineers or purchasers shall follow the guidelines as set forth in Appendix C of the Fluid Sealing Association's Technical Handbook, Seventh Edition. PROCO engineers its control unit assemblies to system requirements. Our designs incorporate an allowable stress of 65% of material yield for each rod and plate (rod and plate material to be specified by purchaser). Therefore, it is important to provide pressure and temperature ratings to PROCO when requesting control units for rubber expansion joints. It is also important to provide adjacent mating flange thickness or mating specifications to ensure correct rod lengths are provided.

1. Assemble expansion joint between pipe flanges in its monufactured face--to-face length. Install the retaining rings furnished with the expansion joint.
2. Assemble control rod plates behind pipe flanges as shown. Flange bolis or all thread studs through the control rod plate must be longer to accommodate the plate thickness. Control rod plates should be equally spaced around the flange. Depending upon the size and pressure rating of the system, 2, 3, 4, or more control/limit rods may be required. Refer to Table 4 in this manual or to the Fluid Sealing Association's Technical Handbook, Seventh Edition, for control rod pressure ratings.
3. Insert control/limit rods through top plate holes. Steel flat washers are to be positioned at outer plate surface.
4. If a single nut per unit is funnished, position this nut so that there is a gap between the nut and the steel flat washer. This gap is equal to the join's maximum extension (commencing with the nominal face-to-face lengith. To lock this nut in position, either "stake" the thread in two places or tack weld the nut to the rod. If two nuts are supplied, the nuts will create a "jamming" effect to prevent loosening. (Nuts should be snug against flat washer and control rod plate when piping system is un-anchored.)

Note: Consult the manufacturer if there are any questions as to the rated compression and elongation. These two dimensions are critical in setting the nuts and sizing the compression pipe sleeve (if supplied).
5. If there is a requirement for compression pipe sleeves, ordinary pipe moy be used, sized in length to allow the joint to be compressed to its normal limit.
6. If there is a requirement for optional spherical washers, these washers are to be positioned ot the inner and/or outer plate surface and backed up by movable double nuts.

Table 6	Maximum Surge or Test Pressure of the Systems		
	Number of Limit Rods Recommended		
	2	4	
$\mathbf{2}$	(50)	661	\bullet
2.5	(65)	529	\bullet
$\mathbf{3}$	(75)	441	\bullet
$\mathbf{4}$	(100)	311	622
$\mathbf{5}$	(125)	235	470
$\mathbf{6}$	(150)	186	371
$\mathbf{8}$	(200)	163	326
$\mathbf{1 0}$	(250)	163	325
$\mathbf{1 2}$	(300)	160	320
$\mathbf{1 4}$	(350)	112	223
$\mathbf{1 6}$	(400)	113	227
$\mathbf{1 8}$	(450)	94	187

Notes:

1. Pressures listed above do not relate to the actual design pressure of the expansion joint products, but are the maximum surge or pressure for a specific control rod nominal pipe size.
2. Four rod sets for concentric joints only.

Optional Spherical Washers

Configuration
Oprional Spherical Washers
 sales@procoproducts.com • (800) 344-3246 Frinioco

Installation Instructions for Non-Metallic Expansion Joints

Make sure the exponsion joint rating for temperature, pressure, vacuum and movements match the system requirements. Contact the manufacturer for advice if the system requirements exceed those of the expansion joint selected. Check to moke sure the elastomer selected is chemically compatible with the process fluid or gos.

Expansion joints are normally not designed to make up for piping misalignment errors. Piping should be lined up within $1 / 8^{\prime \prime}$. Misalignment reduces the rated movements of the expansion joint and can induce severe stress and reduce service life. Pipe guides should be installed to keep the pipe aligned and to prevent undue displacement.

Solid anchoring is required wherever the pipeline changes direction and expansion joints should be located as close as possible to anchor points. If piping is not adequately anchored, control rods should be used. If anchors are not used, pressure thrust may cause excessive movement damaging the expansion joint.

Piping must be supported by hangers or anchors so expansion joints do not carry any pipe weight.

Install the expansion joint against the mating pipe flanges and install bolis so that the bolt head and washer are against the retaining rings. If washers are not used, flange leakage can result - particularly at the split in the retaining rings. Flange-to-flange dimension of the expansion joint must match the breach opening. Make sure the mating flanges are clean and are a flat faced type or no more than $1 / 16^{\prime \prime}$ raised face type. Never install expansion joints that utilize split retaining rings next to wofer type check or butterfly valves. Serious damage can result to a rubber joint of this type unless installed against full face flanges.

Table 5 shows the recommended torque ranges for non-metallic exponsion joints with fullfaced rubber flanges. Torque specifications are approximate. Tighten bolts in stages using crossbolt tightening pattern. If the joint has integral fabric and rubber flanges, the bolts should be tight enough to make the rubber flange OD bulge between the retaining rings and the mating flange. After installation, the system should be pressurized and examined to confirm a proper seal. Torque bolts sufficiently to assure leak free operation ot hydrostatic test pressure.

Table 7	Approximate Torque Values
Size	$20-40 \mathrm{ft} / \mathrm{lbs}$
$1^{\prime \prime}$ THRU 2"	$25-60 \mathrm{ft} / \mathrm{lbs}$
$2.5^{\prime \prime}$ THRU $5^{\prime \prime}$	$35-140 \mathrm{ft} / \mathrm{bs}$
$6^{\prime \prime}$ THRU $12^{\prime \prime}$	$50-180 \mathrm{ft} / \mathrm{lbs}$
$14^{\prime \prime}$ THRU $18^{\prime \prime}$	

Ideal storage is in a warehouse with a relatively dry, cool location. Store flanges face down on a pallet or wooden plafform. Do not store other heavy items on top of expansion joints. Ten year sheff life can be expected with ideal conditions. If storage must be outtoors, place on wooden plafform and joints should not be in contact with the ground. Cover with a tarpaulin.

Do not lift with ropes or bars through the bolt holes. If lifiting through the bore, use padding or a saddle to distribute the weight. Make sure cables or forkifit tines do not contact the rubber. Do not let expansion joints sit verically on the edges of the flanges for any period of time.
A. Do not insulate over a non-metallic expansion joint.
B. It is acceptable (but not necessary) to lubricate the expansion joint flanges with a thin film of graphite dispersed in glycerin or water to ease disassembly ot a later time.
C. Do not weld in the near vicinity of a non-metallic joint.
D. If expansion joints are to be installed underground, or will be submerged in water, contact manufacturer for specific recommendations.
E. If the expansion joint will be instolled outdoors, make sure the cover material will withstand ozone, sunlight, etc.
F. Check the tightmess of leadfriee flanges two or three weeks after installation and retighten if necessary.

Warning: Expansion joints mav operate in pipelines or equipment carrying fluids and/or gasses at elevated temperature and pressures and may transport hazardous materials. Precautions should be taken to protect personnel in the event of leakage or splash. Rubber joints should not be installed in areas where inspection is impossible. Make sure proper drainage is available in the event of leakage when operating personnel are not available.

Piping System Layaut Examples

ALSO AVAILABLE FROM Proco Products, Inc.

ITR-RC-231

Proco Products, Inc. can supply an Integral Tie Rod Design Joint when spoce prohibits use of typical rod designs.

2431 North Wigwam Dr. (95205) P.O. Box 590 • Stockton, GA 95201-0590 • USA Association

Water Environment Federation ${ }^{\circ}$
Preserving \& Enbancing
the Global Water Enviromment
$\begin{array}{llllll}\mathbf{M} & \mathbf{E} & \mathbf{M} & \mathbf{B} & \mathbf{E} & \mathbf{R}\end{array}$
R
REPRESENTED BY:

